
 

 
WWW.6G-XR.EU 

 
Grant Agreement No.: 101096838  Topic: HORIZON-JU-SNS-2022-STREAM-C-01-01  
Call: HORIZON-JU-SNS-2022  Type of action: HORIZON-JU-RIA 

 

 
 
 

 

 

 

 

 

D3.1: Initial versions of XR enablers 
Revision: V.1.0 

 

Work package WP3 

Task Task 3.1, Task 3.2, Task 3.3, Task 3.4, Task 3.5, Task 3.6 

Due date 30/06/2024 

Submission date 26/06/2024 

Deliverable lead VICOM 

Version 1.0 

Authors Roberto Viola (VICOM), Inhar Yeregui (VICOM), Daniel Mejías (VICOM), Arne Erdmann 
(RAY), Chathura Sarathchandra (IDE), Mario Montagud (i2CAT), Isaac Fraile (i2CAT), 
Jaume Moragues (i2CAT), Aurora Ramos (CGE), Mariana Kyrova (MATSUKO), Michal 
Szakala (MATSUKO), Rafael Rosales (INTEL), Fernando Pargas (TID) 

Reviewers Sherif Adeshina Busari (IT), Valerio Frascolla (INT), Mohammed Al-Rawi (IT) 

Abstract The 6G-XR project is dedicated to building an advanced infrastructure for eXtended 
Reality (XR) services, including the uses cases of Augmented Reality (AR) exploiting 
network control plane and Virtual Reality (VR) based on network user plane. This 
deliverable D3.1 describes the initial versions of the developed XR Enablers, consisting 
in Multimedia Functions to enable the end-to-end multimedia pipeline for AR/VR 
services. These XR Enablers convers multi-sensor volumetric capture and 
reconstruction, cloud/edge XR processing, adaptive and low latency XR delivery, 
multi-modal synchronization, session management and media orchestration, and KPI 
monitoring system. The project aims at integrating these XR Enablers within the use 
cases to conduct trials and evaluate the Key Performance Indicators. 

Keywords 5G/6G, Augmented Reality (AR), Virtual Reality (VR), Holographic Communications, 
User Plane, Control plane, Multimedia Functions, Media Synchronization 

 
 
 
 
  



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 2 of 85 © 2023-2025 6G-XR Consortium 

Document Revision History 

Version Date Description of change List of contributor(s) 

V0.1 20/11/2023 First version of the ToC for comments VICOM 

V0.2 20/05/2024 Full draft version All partners 

V0.3 31/05/2024 Version after external review All partners 

V0.4 12/06/2024 Technical manager review IT 

V0.5 21/06/2024 Final draft version All partners 

V1.0 26/06/2024 Final version VICOM 

 

  



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 3 of 85 © 2023-2025 6G-XR Consortium 

DISCLAIMER 

      

The 6G-XR (6G eXperimental Research infrastructure to enable next-generation XR services) project has 
received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the 
European Union’s Horizon Europe research and innovation programme under Grant Agreement No 
101096838. This work has received funding from the Swiss State Secretariat for Education, Research, 
and Innovation (SERI). 

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect 
those of the European Union. Neither the European Union nor the granting authority can be held 
responsible for them. 

COPYRIGHT NOTICE 

© 2023 - 2025 6G-XR Consortium 

Project co-funded by the European Commission in the Horizon Europe Programme 

Nature of the deliverable: R 

Dissemination Level 

PU 
Public, fully open, e.g. web (Deliverables flagged as public will be automatically 
published in CORDIS project’s page) 

✓ 

SEN Sensitive, limited under the conditions of the Grant Agreement   

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444  

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444  

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444  

* R: Document, report (excluding the periodic and final reports)  

DEM: Demonstrator, pilot, prototype, plan designs  

DEC: Websites, patents filing, press & media actions, videos, etc. 

DATA: Data sets, microdata, etc. 

DMP: Data management plan 

ETHICS: Deliverables related to ethics issues.  

SECURITY: Deliverables related to security issues 

OTHER: Software, technical diagram, algorithms, models, etc.  

 

https://digital-strategy.ec.europa.eu/en/policies/smart-networks-and-services-joint-undertaking
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://www.sbfi.admin.ch/sbfi/en/home.html
https://www.sbfi.admin.ch/sbfi/en/home.html
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 4 of 85 © 2023-2025 6G-XR Consortium 

EXECUTIVE SUMMARY 

This report is the first deliverable (D3.1) of Work Package 3 (WP3) – “XR Enablers” of the 6G-XR project. 

The purpose of D3.1 is to present the initial versions of the Virtual Network Functions (VNFs) for 

eXtended Reality (XR) that have been generated in WP3. These VNFs, called XR Enablers, will be 

developed further during the rest of the WP3 timeline. 

The VNFs are meant to be integral part of the network user plane and control plane for enabling real-

time holographic communications, including Virtual Reality (VR) and Augmented Reality (AR). Thus, 

they are necessary to enable the deployment of three of the five planned use cases (UCs) within the 

6G-XR project (see D1.1 [1] for further details): 

• UC1 - Resolution Adaptation or Quality on Demand 

• UC2 - Routing to the Best Edge 

• UC3 - Control Plane Optimization 

The integration of the VNFs into the three UCs has been carried out at the 6G-XR South Node test 

facilities, namely 5Tonic1 (Madrid, Spain) and 5GBarcelona2 (Barcelona, Spain). 

D3.1 offers a comprehensive description of the first versions of the XR Enablers, encompassing their 

requirements and the employed hardware and software for their development. These XR Enablers 

consist of multi-sensor volumetric capture and reconstruction, cloud/edge XR processing, adaptive and 

low latency XR delivery, multi-modal synchronization, session management and media orchestration. 

Enablers concerning infrastructure configuration and KPI monitoring system complete this report to 

provide a comprehensive overview of the XR Enablers integration and interoperability with the 

infrastructure. 

 

1 https://www.5tonic.org/ 

2 https://5gbarcelona.org/ 

https://www.5tonic.org/
https://5gbarcelona.org/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 5 of 85 © 2023-2025 6G-XR Consortium 

TABLE OF CONTENTS 

Disclaimer ................................................................................................................................................. 3 

Copyright notice ....................................................................................................................................... 3 

EXECUTIVE SUMMARY .................................................................................................................. 4 

TABLE OF CONTENTS .................................................................................................................... 5 

LIST OF FIGURES ........................................................................................................................... 7 

LIST OF TABLES ............................................................................................................................. 8 

ABBREVIATIONS ........................................................................................................................... 9 

1 INTRODUCTION ............................................................................................................ 11 

1.1 Objectives of the deliverable .................................................................................................. 11 

1.2 Structure of the deliverable.................................................................................................... 12 

1.3 Target audiende of the deliverable ........................................................................................ 12 

2 END-TO-END DIAGRAM OF COMMUNICATIONS ............................................................ 13 

2.1 VR user plane .......................................................................................................................... 13 

2.2 AR control plane ..................................................................................................................... 14 

3 MULTI-SENSOR VOLUMETRIC RECONSTRUCTION .......................................................... 16 

3.1 Video capture ......................................................................................................................... 16 

3.2 Video reconstruction .............................................................................................................. 19 

4 CLOUD/EDGE XR PROCESSING AND SCALABILITY........................................................... 22 

4.1 Selective Forwarding Unit....................................................................................................... 22 

4.2 Multipoint Control Unit .......................................................................................................... 25 

4.3 Remote Renderer ................................................................................................................... 29 

5 ADAPTIVE LOW-LATENCY XR DELIVERY ......................................................................... 39 

5.1 Native player ........................................................................................................................... 39 

5.2 WebRTC streaming to web player .......................................................................................... 41 

5.3 DASH streaming to web player ............................................................................................... 47 

6 MULTI-MODAL SYNCHRONIZATION .............................................................................. 54 

6.1 Overview on synchronization in 3GPP.................................................................................... 54 

6.2 Clock synchronization ............................................................................................................. 58 

6.3 Media synchronization ........................................................................................................... 60 

7 SESSION MANAGEMENT AND XR MEDIA ORCHESTRATION ............................................ 65 

7.1 Holo-orchestrator ................................................................................................................... 65 

7.2 IMS session manager .............................................................................................................. 67 

8 INFRASTRUCTURE CONFIGURATION ............................................................................. 69 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 6 of 85 © 2023-2025 6G-XR Consortium 

8.1 XR application traffic requirements extraction ...................................................................... 69 

8.2 Scalability enabler ................................................................................................................... 70 

8.3 Edge Continuum enabler ........................................................................................................ 71 

9 KPI AND TELEMETRY .................................................................................................... 73 

9.1 Monitoring system .................................................................................................................. 73 

10 SUMMARY ................................................................................................................... 80 

11 REFERENCES ................................................................................................................. 81 

APPENDIX A - R32 LIGHT-FIELD CAMERA FACTSHEET ................................................................... 82 

 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 7 of 85 © 2023-2025 6G-XR Consortium 

LIST OF FIGURES 

FIGURE 1. COMPONENTS FOR VR USER PLANE. ...................................................................................... 14 

FIGURE 2. IMS DATA CHANNEL ARCHITECTURE DESIGN. ........................................................................ 15 

FIGURE 3. COMPONENTS OF A VOLUMETRIC CAPTURER USING FOUR CAMERAS AND EDGE SUBSYSTEMS.
 16 

FIGURE 4. HIGH-LEVEL COMMUNICATION ARCHITECTURE WHEN ADOPTING A SELECTIVE FORWARDING 
UNIT (SFU). ..................................................................................................................................... 23 

FIGURE 5. SFU ARCHITECTURE. ............................................................................................................... 23 

FIGURE 6. HIGH-LEVEL SCHEME OF A SESSION WITH CLIENTS CONNECTING TO TWO DIFFERENT SFUS. 24 

FIGURE 7. MCU ARCHITECTURE............................................................................................................... 26 

FIGURE 8. LOGICAL MODULES OF THE REMOTE RENDERER AND VIDEO PLAYER. ................................... 31 

FIGURE 9. COMMUNICATIONS DIAGRAM OF THE REMOTE RENDERER. ................................................. 33 

FIGURE 10. REMOTE RENDERER RUNNING IN UNITY IDE. ....................................................................... 38 

FIGURE 11. HIGH-LEVEL SYSTEM ARCHITECTURE TO CONNECT UNITY-BASED PLAYERS INCLUDING THE SDK 
TO ENABLE HOLOGRAPHIC COMMUNICATIONS. NOTE THAT THE SERVER BOX CAN REPRESENT 
EITHER AN SFU OR MCU .................................................................................................................. 40 

FIGURE 12. COMPONENTS OF WEBRTC STREAMING. ............................................................................. 41 

FIGURE 13. SPECIFIC COMMUNICATIONS DIAGRAM FOR WEBRTC PROTOCOL. ...................................... 43 

FIGURE 14. WEBRTC VIDEO PLAYER. ....................................................................................................... 47 

FIGURE 15. COMPONENTS OF DASH STREAMING. .................................................................................. 48 

FIGURE 16. SPECIFIC COMMUNICATIONS DIAGRAM FOR DASH PROTOCOL. .......................................... 50 

FIGURE 17. DASH PLAYER BASED ON SHAKA PLAYER. ............................................................................. 53 

FIGURE 18. EXEMPLARY PROCEDURES FOR SYNCHRONIZATION STATUS REPORTING VIA THE CONTROL 
PLANE. ............................................................................................................................................ 56 

FIGURE 19. EXEMPLARY PROCEDURES FOR SYNCHRONIZATION STATUS REPORTING VIA THE USER PLANE.
 57 

FIGURE 20. EXEMPLARY PROCEDURES FOR NETWORK-ASSISTED MEDIA SYNCHRONIZATION. .............. 57 

FIGURE 21. INTER-DESTINATION ASYNCHRONY. ..................................................................................... 63 

FIGURE 22. INTRA-MEDIA SYNCHRONIZATION. ...................................................................................... 64 

FIGURE 23. HIGH-LEVEL OVERVIEW OF HOLO ORCHESTRATOR MODULES AND SERVICES. ..................... 66 

FIGURE 24. E2E MATSUKO COMPONENTS ADAPTATION TO IMS SYSTEM – ARCHITECTURE. .................. 67 

FIGURE 25. OVERVIEW OF THE TRAFFIC PROFILER: 1) PROFILING OF APPLICATION, 2) CONFIGURATION OF 
TIME-AWARE SCHEDULE, 3) MONITORING OF KPIS TO TRIGGER FURTHER PROFILING. ................. 70 

FIGURE 26. HIGH-LEVEL ARCHITECTURE OF THE METRICS MEASUREMENT AND REGISTRATION SYSTEM.
 74 

FIGURE 27. GRAFANA DASHBOARDS SHOWING COLLECTED METRICS FROM XR ENABLERS. .................. 78 

 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 8 of 85 © 2023-2025 6G-XR Consortium 

LIST OF TABLES 

TABLE 1. REQUIREMENTS FOR THE EDGE RENDERING COMPONENT. ..................................................... 34 

TABLE 2. HARDWARE EMPLOYED TO DEPLOY THE EDGE RENDERING COMPONENT............................... 36 

TABLE 3. SOFTWARE DEPENDENCIES OF THE REMOTE RENDERER AND THEIR VERSIONS....................... 37 

TABLE 4. ENVIRONMENT FOR THE DEPLOYMENT OF THE CONTAINERIZATION REMOTE RENDERER. ..... 38 

TABLE 5. REQUIREMENTS OF THE WEBRTC STREAMING COMPONENTS. ................................................ 44 

TABLE 6. SOFTWARE VERSIONS USED IN THE SIGNALLING SERVER. ........................................................ 45 

TABLE 7. SOFTWARE VERSIONS USED IN THE WEBRTC PLAYER. ............................................................. 46 

TABLE 8. REQUIREMENTS OF THE DASH STREAMING COMPONENTS. .................................................... 51 

TABLE 9. SOFTWARE VERSIONS USED IN HTTP SERVER. .......................................................................... 52 

TABLE 10. SOFTWARE VERSIONS USED IN DASH PLAYER. ....................................................................... 52 

TABLE 11. SYNCHRONIZATION PARAMETERS.......................................................................................... 54 

TABLE 12. COMPARISON BETWEEN NTP AND PTP. ................................................................................. 58 

TABLE 13. CLOCK SYNCHRONIZATION REQUIREMENTS........................................................................... 59 

TABLE 14. MEDIA SYNCHRONIZATION REQUIREMENTS AND CARRIED OUT IMPLEMENTATIONS. .......... 61 

TABLE 15. INITIAL SYNCHRONIZATION RESULTS. .................................................................................... 63 

TABLE 16. KPIS OF THE NATIVE PLAYER COMPONENT. ........................................................................... 74 

TABLE 17. KPIS OF THE SFU COMPONENT. .............................................................................................. 75 

TABLE 18. KPIS OF THE MCU COMPONENT. ............................................................................................ 75 

TABLE 19. KPIS OF THE REMOTE RENDERER COMPONENT...................................................................... 76 

TABLE 20. KPIS FOR WEBRTC PLAYER. ..................................................................................................... 76 

TABLE 21. KPIS FOR DASH PLAYER. ......................................................................................................... 77 

TABLE 22. KPIS FOR THE HOLO ORCHESTRATOR COMPONENT. .............................................................. 77 

TABLE 23. KPIS FOR SCALABILITY ENABLER ............................................................................................. 77 

TABLE 24. KPIS FOR THE EDGE CONTINUUM ENABLER ........................................................................... 77 

 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 9 of 85 © 2023-2025 6G-XR Consortium 

ABBREVIATIONS 

2D  2-dimensional 

3D  3-dimensional 

3GPP 3rd Generation Partnership 
Project 

5G  Fifth Generation 

5GC  5G Core 

6DoF  6 Degrees of Freedom 

AF  Application Function 

API Application Programming 
Interface 

AR  Augmented Reality 

AS  Application Server 

CM  Clock Manager 

ConM  Index / Connection Manager 

CP  Control Plane 

CPU  Central Processing Unit 

CUDA Compute Unified Device 
Architecture 

DASH Dynamic Adaptive Streaming 
over HTTP 

DCSF Data Channel Signalling 
Function 

DMA  Direct Memory Access 

DNS  Domain Name System 

DPE  Device Packaging Entity 

E2E  End-to-End 

EC  European Commission 

EU  European Union 

FoV  Field of View 

fps  Frames Per Second 

GPS  Global Positioning System 

GPU  Graphics Processing Unit 

GUI  Graphical User Interface 

HTTP  Hypertext Transfer Protocol 

ICE Interactive Connectivity 
Establishment 

IDE Integrated Development 
Environment 

IMS  IP Multimedia Subsystem 

IMSDC  IMS Data Channel 

IMSI International Mobile 
Subscriber Identity 

IP  Internet Protocol 

IPU  Image Processing Unit 

KPI  Key Performance Indicator 

LF-SDK  Light-Field SDK 

LoD  Level of Detail 

LTS  Long Term Support 

MCU  Multipoint Control Unit 

mDNS  multicast DNS 

ML  Machine Learning 

MLA  Microlens Array  

MNO  Mobile Network Operator 

MPD Media Presentation 
Description 

MU  Media Unit 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 10 of 85 © 2023-2025 6G-XR Consortium 

NaaS  Network-as-a-Service 

NBI  NorthBound Interface 

NEF  Network Exposure Function 

NTP  Network Time Protocol 

NWDAF Network Data Analytics 
Function 

OS  Operating System 

PC  Personal Computer 

PCC  Policy and Charging Control 

PCF  Policy Control Function 

PDU  Protocol Data Unit 

PTP  Precision Time Protocol 

QER  QoS Enforcement Rule 

QoE  Quality of Experience 

QoS  Quality of Service 

RAM  Random Access Memory 

RAN  Radio Access Network 

RGBD  Red Green Blue Depth 

RoI  Region of Interest 

RTCP Real-time Transport Control 
Protocol 

RTP  Real-time Transport Protocol 

SDK  Software Development Kit 

SDP  Session Description Protocol 

SfM  Structure from Motion 

SFU  Selective Forward Unit 

SM  Session Manager 

SMF Session Management 
Function 

SNS  Smart Networks and Services 

SRTP  Secure RTP 

SUCI Subscription Concealed 
Identifier 

TCP  Transmission Control Protocol 

TSN  Time-Sensitive Networking 

UC  Use Case 

UDP  User Datagram Protocol 

UE  User Equipment 

UHD  Ultra High Definition 

UM  User Manager 

UP  User Plane 

UPF  User Plane Function 

URSP  UE Route Selection Policy 

VM  Virtual Machine 

VNF  Virtual Network Function 

VR  Virtual Reality 

WebRTC Web Real-Time 
Communication 

WP  Work Package 

XR  eXtended Reality 

XRM  XR and Media Services

 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 11 of 85 © 2023-2025 6G-XR Consortium 

1 INTRODUCTION 

The main purpose of D3.1 is to summarize the outcomes of all the tasks of Work Package 3 (WP3) “XR 
Enablers” during M4-M18 of the “6G eXperimental Research infrastructure to enable next-generation 
XR services” (6G-XR) project. 

The objective of WP3 is to develop enablers for XR multimedia processing, including AR and VR. Thus, 
each task focuses on the implementation of different enablers or multimedia functions, addressing 
several aspects of the End-to-End (E2E) media pipeline: 

1. Task 3.1 (T3.1) focuses on volumetric capture sensors and reconstruction. 

2. Task 3.2 (T3.2) leverages edge computing capabilities to enable scalability of multimedia 
processing. 

3. Task 3.3 (T3.3) employs heterogeneous protocols to enable the delivery of multimedia content 
across distributed users having different devices and interaction capabilities. 

4. Task 3.4 (T3.4) provides clock and media synchronization capabilities to enable a coherent 
participation to immersive media communications among users. 

5. Task 3.5 (T3.5) develops solutions for media session orchestration. 

6. Task 3.6 (T3.6) enables the collection of Key Performance Indicators (KPIs) related with 
multimedia processing such that they can be used for evaluation or real-time actuation. 

This document describes the initial implementation of the XR Enablers or multimedia functions of the 
E2E media pipeline. These functions will be developed further during the remaining months of the 
project and, finally, integrated within the computing infrastructures deployed by WP2 “Networking 
and Computing Enablers”. 

The solutions developed within WP3 will also be used to demonstrate three UCs related to VR user 
plane (UC1 and UC2 presented in D1.1 [1]) and AR control plane (UC3 presented in D1.1 [1]). These 
UCs are included in WP6 “Validation of Holographic and 3D Digital Twin Use cases”. 

1.1 OBJECTIVES OF THE DELIVERABLE  

The objectives of D3.1 are to: 

• Describe the E2E diagram of communications to be developed and integrated, as it is necessary to 
demonstrate three WP6 UCs (UC1 and UC2 focus on the VR user plane, while UC3 focuses on the 
AR control plane). 

• Present the progress on the development of the multimedia functions required for the E2E media 
pipeline. For each of them, an overview of the function is included and, when applicable, the 
related requirements, and the initial hardware and software employed for the development. 

• Present the components in charge of providing synchronization capabilities across the participants 
of a media session, as well as components for orchestrating the different functions of the E2E 
media pipeline. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 12 of 85 © 2023-2025 6G-XR Consortium 

• Describe the infrastructure configuration enablers and monitoring system employed by the XR 
Enablers to configure network resources and to collect KPIs from different multimedia functions 
of the E2E media pipeline, respectively. 

1.2 STRUCTURE OF THE DELIVERABLE  

The structure of D3.1 is as follows: 

• Chapter 2 introduces the E2E diagram of communications that are related to WP6 UCs. 

• Chapter 3 focuses on multi-camera capture system developed for generating volumetric video 
streams. Video reconstruction solution supported by the Edge is also described, as it helps to 
improve the quality of the volumetric video through the reconstruction and fusion of the multiple 
inputs. 

• Chapter 4 describes the components to be deployed on the cloud/edge infrastructure to scale and 
provide wider access to XR services. These components include several media processing such as 
forwarding, mixing, transcoding and rendering of XR content. 

• Chapter 5 describes the streaming protocols and video players employed to deliver the media to 
the end user’s device. The device can run a native player with volumetric capture, 6 Degrees of 
Freedom (6DoF) interaction (i.e., movement through 3D space), and consumption capabilities, or 
a simplified web-based player where the volumetric capture is not available. 

• Chapter 6 presents the clock and media synchronization mechanisms to be integrated to provide 
a synchronized XR experience among participants and to support the monitoring of multimedia 
performance. 

• Chapter 7 describes the Holo Orchestrator for the VR user plane and the IP Multimedia Subsystem 
(IMS) session manager for the AR control plane. 

• Chapter 8 presents the infrastructure configuration mechanisms to allocate the infrastructure 
resources and/or select the appropriate resources to run the multimedia processing components. 

• Chapter 9 reports on the monitoring system employed to assess the performance metric from the 
E2E media pipeline. 

• Finally, Chapter 10 summarizes the report. 

1.3 TARGET AUDIENDE OF THE DELIVERABLE 

This deliverable is a public report which targets the project consortium, stakeholders, academic and 
research organizations, EU commission services, and the general public. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 13 of 85 © 2023-2025 6G-XR Consortium 

2 END-TO-END DIAGRAM OF COMMUNICATIONS 

XR services are typically developed by strategically concatenating building blocks or Application 

Functions (AFs) along the E2E media pipeline (i.e., from capture to presentation). In Mobile Network 

Operator (MNO) networks, these XR AFs can become part of either the Control Plane (CP) – thus 

overseeing session management and control functions – or the User Plane (UP) – thus being in charge 

of media processing, communications or delivery functions. 

6G-XR is a project that provides, in its WP3, a set of XR Enablers or AFs, belonging to both the UP and 

CP. These enablers are deployed over distributed cloud continuum/edge computing infrastructures 

(described in WP2), making use of Radio Access Network (RAN) and core network resources (described 

WP4). The VR user plane and AR control plane are described in the following subsections. 

2.1 VR USER PLANE 

Figure 1 provides a high-level overview of an E2E multimedia pipeline that can be deployed to provide 

real-time multiuser holographic communication services in shared VR scenarios. This multimedia 

pipeline concatenates several XR Enablers for media processing over the UP. The key XR Enablers are 

briefly introduced as follows: 

• Volumetric Content Capture and Reconstruction: these are UP AFs deployed at the User 

Equipment (UE) and/or in-cloud. They aim at integrating volumetric capture sensors and 

reconstruction capabilities. XR systems typically employ real-time capture sensors, using either 

single or multiple sensors, and which often allow for fine-tuning the resolution and granularity 

of the captured data, even during the lifetime of a session. 

• Selective Forwarding Unit (SFU): it is a UP AF deployed as in-cloud/edge component. It is in 

charge of forwarding media streams from origin clients to the appropriate destination clients. 

• Multipoint Control Unit (MCU): it is a UP AF deployed as in-cloud/edge component. In addition 

to forwarding media streams from origin clients to the adequate destination clients, it also 

performs other advanced features like streams mixing and transcoding, to provide a single and 

personalized stream to every target client. 

• Remote Renderer: it is a UP AF deployed as in-cloud/edge component. It acts as a surrogate 

player on the cloud/edge and provides a rendered 2D/360o video stream to lightweight 

players. 

• Native (full-fledged) or web (lightweight) players: these are UP AFs deployed at the User 

Equipment (UE). These are software components used by clients involved in media content 

creation and/or consumption, and to perform the required interactions. 

• Holo Orchestrator: it is an UP AF meant for orchestration and deployed as in-cloud component. 

It is in charge of session management and interfacing the Edge Orchestration components. 

• Monitoring System: it is a UP AF meant for monitoring and deployed as in-cloud component in 

charge of hosting relevant Quality of Service (QoS), resource usage and activity metrics (i.e., 

telemetry) that can be used to evaluate the performance of the session, and to perform 

advanced adaptations. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 14 of 85 © 2023-2025 6G-XR Consortium 

The streaming and communication protocols and pipelines, as well as the control protocols for 
exchanging metadata about session management with the Holo Orchestrator, are part of the E2E VR 
platform. 

 

Figure 1. Components for VR User Plane. 

2.2 AR CONTROL PLANE 

Figure 2 provides a high-level overview of the holographic communication service based on the 

integration of an AR application with IMS, being part of network CP. It shows the IMS data channel 

architecture design with components and communication flows. Data channel components are 

distributed on IMS and public clouds. IMS cloud components ensure the proper signalling between the 

consumer User Equipment (UE) and the AR media servers. The signalling server, which resides in a 

public cloud, ensures the connectivity establishment between the data channel signalling function 

(DCSF), media server and the Agent UE using WebSocket messages. 

 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 15 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 2. IMS data channel architecture design. 

To exchange the holographic data through the UP, a series of preliminary steps need to be taken by 

the CP to carry out correct communication between the different network elements involved. 

The information flow in Figure 2 is described in the following steps (1)-(6): 

The first step is for the agent to register in the signalling server session manager to establish the start 

of the session (1) and wait for a consumer (viewer) user device to begin a classic call (IMS call) to the 

IMSDC (IMS Data Channel) service. Then, the device downloads the AR-enabled application from the 

IMS-AS that is represented in the viewer's phone dialler (2). 

The signalling server receives then a holographic call registration request (3) and automatically obtains 

information from the different data channel reconstruction servers available to establish the 

connection with the one that allows the call to be made in the most optimal way in that specific 

moment (4). 

Once connections are established, the signalling server sends a notification to the user agent of this 

connection to initiate the call and exchange Session Description Protocol (SDP) messages and the initial 

session properties (5). This way, the agent user is also able to access the established reconstruction 

server and change to the UP for the transmission of 2D/3D Web Real-Time Communication (WebRTC) 

video/data and WebRTC/IMS audio (6). 

1 

2 

3 

4 

5 6 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 16 of 85 © 2023-2025 6G-XR Consortium 

3 MULTI-SENSOR VOLUMETRIC RECONSTRUCTION 

This section presents the first versions of the XR Enablers developed to capture volumetric video 
streams from a multi-camera setup. Furthermore, video reconstruction solutions are also presented 
as they are used to improve the quality of the captured streams. Operations such as reconstruction 
and fusion of several volumetric streams can be supported by edge processing capabilities, as 
presented in Figure 3. 

Figure 3, the Volumetric Capturer (violet block) consists of four R32 light-field cameras (see Appendix 
A) and a 2x2x2 cubic meters capture area for holoportation. Four CXP-12 lanes transmit the four light-
field streams to the edge (orange block) at a low latency of under 100ms, where they are converted 
into Red Green Blue Depth (RGBD) streams. These streams are then fused into a single volumetric 
stream, encoded, and sent for downstream processing (see Section 4). 

The video capture and video reconstruction operations are described in the following subsections. 

 

Figure 3. Components of a Volumetric Capturer using Four Cameras and Edge Subsystems. 

3.1 VIDEO CAPTURE 

3.1.1 Overview of the component 

The objective of the Volumetric Capturer is to create a sizable capture area, spanning at least 2 by 2 
by 2 cubic meters, for high-fidelity holoportation. This setup is primarily targeted toward professional 
users who have the capability to dedicate sufficient space for holoportation activities and deploy 
specialized hardware accordingly. A typical use case scenario includes presentations or performances 
by lecturers or artists to an audience where interactive engagement is desired, and the fidelity of the 
experience is paramount.  

Contemporary (active) multi-view stereo systems, such as the one presented by Google [2], can have 
up to 90 cameras and specialized illumination arrangements. This setup generates high-quality 3D 
captures but requires a significant amount of data, up to 520 Gbps. For now, such setups can pose 
significant challenges even in a professional context, particularly in terms of system size, setup time, 
expenses, and computational demands, and those are even more acute in scenarios requiring low 
latency, such as holoportation.  



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 17 of 85 © 2023-2025 6G-XR Consortium 

In contrast, the Volumetric Capturer incorporates four R32 light-field cameras developed as part of the 
6G-XR project. Light-field cameras present a novel solution for holoportation by capturing both 2D and 
3D data in a single image. This offers several practical advantages, including the ability to streamline 
setup processes with fewer cameras, thanks to the self-contained 3D information of each camera. 
Additionally, their compact nature facilitates easier transport, deployment, and reconfiguration of the 
setup for various capture areas. Moreover, light-field cameras exhibit increased tolerance to motion 
blur. Although high computational demands exist, especially in low-latency environments, today's 
hardware can manage these requirements. 

The Volumetric Capturer uses CoaXPress (CXP)-12 to connect the R32 light-field cameras with the edge. 
CoaXPress is a high-speed serial communication standard designed for imaging applications over 
coaxial cables. It provides a robust, high-bandwidth, low-latency interface to connect cameras to 
processing units. Each R32 camera connects to the edge device through a single coaxial cable, allowing 
for cable lengths of up to 30 meters without affecting bandwidth. Alternatively, an extended cable 
length of up to 180 meters is achievable, although with reduced bandwidth. Although CoaXPress also 
supports fiber optic cables, removing all practical limitations to cable lengths, we decided to use copper 
CoaXPress cables as they deliver power to the cameras through a single cable, which also handles the 
data link, simplifying setup procedures and enhancing system flexibility. 

6G-XR can fully leverage the CoaXPress high bandwidth and low latency characteristics to offload the 
intensive light-field processing tasks to the more powerful computational resources available at the 
edge, reducing overall system latency. This architecture ensures efficient data transfer and processing, 
optimizing the performance of the Volumetric Capturer for real-time applications such as 
holoportation. 

The R32 cameras come with a custom lens mount that isolates the camera body from the lens 
thermally, making them more resilient to thermal fluctuations. It features a modified Basler OEM lens 
with a 24.5mm focal length, providing the R32 cameras with a 55.7° horizontal and 39.1° vertical Field 
of View (FoV). 

The Volumetric Capture sensors have already been deployed at i2CAT facilities for their integration 
with the HoloMIT solution3, by i2CAT. 

The Volumetric Capturer will be interfaced with the Holo Orchestrator (Section 7) to perform Level of 
Detail (LoD) / rate adaptations based on indication from the in-cloud component (e.g., due to detected 
QoS drops, or congestion). This is planned for a later stage of the project. 

3.1.2 Requirements 

As mentioned in Section 3.1.1, the main goal of the Volumetric Capturer is to provide realistic and 
immersive holoportation experiences, a goal which requires specific features in the R32 cameras.  

Each R32 camera is equipped with an Onsemi XGS image sensor, which has a resolution of 32.4 MP 
and can capture images at a maximum frame rate of 36 fps. However, during light-field processing, 
there is a natural loss of lateral resolution, which reduces the effective resolution to 8.1 MP. By merging 
multiple R32 outputs, reconstructions with resolutions greater than 4K (or surpassing Ultra High 
Definition (UHD) resolution in the first level of adjustments to the quality of experience) can be 
achieved. This excess resolution and bandwidth allow to prioritize various aspects and test their impact 
on immersion, such as high resolution at 30 fps vs medium resolution at 60 fps.  

 
3 https://i2cat.net/holoportation-technology/ 

https://i2cat.net/holoportation-technology/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 18 of 85 © 2023-2025 6G-XR Consortium 

The Onsemi XGS is an image sensor with a global shutter that simultaneously captures an entire frame. 
This eliminates the distortion and artifacts caused by conventional rolling shutters (scanning line by 
line), such as image skewing during the capture of fast-moving objects. This feature is particularly 
useful for allowing the natural movements of holoported users. Moreover, global shutter sensors are 
ideal for applications requiring precise synchronization and timing, making them perfect for capturing 
dynamic scenes with minimal motion blur with multiple cameras.  

Light-field cameras gain depth-sensing capabilities by placing thousands of tiny lenses in front of the 
image sensor. For the R32, a multi-focused plenoptic 2.0 Microlens Array (MLA) in a Galilean 
configuration with an aperture of f/1.8 was developed. The rationale for these design decisions is 
provided below: 

• Plenoptic 2.0: it also known as focused plenoptic, represents the state-of-the-art approach to 
light-field imaging, offering minimal loss in lateral resolution. While it demands higher 
computational resources, it remains the preferred choice for achieving high-fidelity content. 

• Multi-focused: it is a design aspect to extend the capabilities of plenoptic 2.0 by employing a 
MLA with multiple focal lengths, such as three in the case of 6G-XR, effectively expanding the 
Depth of Field of the cameras by a factor of 6. Although the Depth of Field expansion may not 
be advantageous in confined spaces, it can be traded for reduced motion blur, thanks to 
increased light sensitivity and faster shutter speeds, enabled by a wider aperture for the same 
Depth of Field compared to a 2D or conventional light-field camera. 

Operating the Volumetric Capturer in confined spaces necessitates the use of wide-angle lenses. 
Through simulations and experiments, a Galilean setup, which focuses the lens of the camera behind 
the image sensor, has demonstrated superior compatibility and depth resolution when paired with 
wide-angle lenses compared to the more common Keplerian light-field configuration.  

Ensuring a match between the working aperture of the camera lens and the MLA aperture is crucial in 
light-field imaging. The f/1.8 aperture chosen enables high light sensitivity, allowing for shutter speeds 
of under 5 ms that can still capture natural human movement with manageable motion blur. This wide 
aperture is made possible by the Depth of Field expansion provided by the multi-focus design. While a 
more open aperture is feasible, it would significantly limit compatibility with commercially available 
wide-angle lenses. 

One challenge identified during initial experiments with the R32 cameras was the thermal output 
generated by the image sensor when operated at full bandwidth. The use of a conventional metal lens 
mount, paired with a metal lens, exacerbated this issue by acting as a heat sink for the image sensor, 
prolonging the time required for the camera to reach thermal equilibrium to as much as two hours. 
This extended startup time posed a significant problem, as the thermal expansion of the lens mounts 
caused shifts in the lens focus, rendering the calibration of the camera invalid. Although a hot and cold 
stage calibration method could potentially address this issue, neither would be applicable during the 
lengthy two-hour startup period, severely limiting the practical utility of the Volumetric Capturer. 

To mitigate this issue, a software compensation method is proposed as described later, alongside the 
development of a thermally isolating lens mount. This solution significantly reduces the time required 
for the camera to reach thermal equilibrium to under 30 minutes. By implementing these measures, 
the adverse effects of thermal expansion on lens focus are mitigated, ensuring the validity of 
calibration, combined with the software compensation, even during the startup phase.  



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 19 of 85 © 2023-2025 6G-XR Consortium 

3.1.3 Volumetric sensors 

To summarize, the volumetric sensors used for the Volumetric Capturer are four R32 light-field 
cameras, which are essential for achieving high-fidelity holoportation. These cameras are equipped 
with Onsemi XGS image sensors with 32.4 MP resolution, capable of capturing images at up to 36 
frames per second. However, due to light-field processing, the effective resolution is reduced to 8.1 
MP. The hardware setup uses CoaXPress for robust, high-speed data transmission between the 
cameras and edge processing units. The R32 cameras feature a unique lens mount design that 
thermally isolates the camera body from the lens. They are equipped with a modified Basler OEM lens 
that offers a 55.7° horizontal and 39.1° vertical FoV. Additionally, these cameras incorporate a multi-
focused plenoptic 2.0 MLA in a Galilean configuration, optimizing depth of field and minimizing motion 
blur. This hardware configuration is designed to meet the demands of professional holoportation 
setups, providing the necessary resolution, frame rate, and depth sensing capabilities for immersive, 
high-quality 3D captures. 

For further details, please refer to the R32 factsheet in Appendix A. 

3.1.4 Initial software 

The R32 light-field cameras use GeniCam to interface with the edge. GeniCam, short for Generic 
Interface for Cameras4, is a standardized interface originally developed for machine vision cameras. It 
provides a unified way to control and access camera features across different platforms and interfaces. 
It simplifies integration, enabling easy configuration, image capture, and access to camera 
functionalities.  

3.2 VIDEO RECONSTRUCTION 

3.2.1 Overview of the component 

This section outlines the hardware and software components deployed at the edge to interface with 
the Volumetric Capturer and extract 2D and 3D information from the raw light-fields. A CoaXPress 
frame grabber card is utilized on the hardware side, capable of capturing four streams and providing 
the required bandwidth between the Volumetric Capturer and the edge. Following the transmission 
of each of the four light-field streams to dedicated Graphics Processing Units (GPUs), the Image 
Processing Units (IPUs) convert these light-fields into RGBD streams. Integral to the accurate operation 
of each IPU are two key calibration components: intrinsic and extrinsic calibration. 

• Intrinsic calibration pertains to the internal characteristics of the camera system, 
encompassing parameters such as focal length, lens distortion, and sensor alignment. By 
calibrating these intrinsic properties, the IPU can accurately interpret the captured light-fields, 
ensuring precise reconstruction of the scene geometry. 

• Extrinsic calibration involves determining the spatial relationship between the individual 
cameras within the Volumetric Capturer setup. By aligning the coordinate systems of each 
camera, the IPU prepares the RGBD streams for fusion into one volumetric stream. 

Both calibrations are currently provided through wizards in Raytrix’s Light-Field Software Development 
Kit (LF-SDK). However, the implementation of a quicker, more user-friendly calibration based on the 

 
4 https://www.emva.org/standards-technology/genicam/ 

https://www.emva.org/standards-technology/genicam/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 20 of 85 © 2023-2025 6G-XR Consortium 

6G-XR’s Open Call 1 project ExCalibAR is ongoing. Level of Details (LoD) adjustments are implemented 
across this pipeline to account for limitations in bandwidth or availability of processing recourses. 

The output from the Volumetric Reconstruction module is meant to be fed to the Volumetric Video 
Encoding components (described in T3.2) developed by i2CAT for an appropriate delivery over the 
network. 

3.2.2 Requirements 

The edge server is equipped with a CoaXPress frame grabber card capable of supporting four CXP-12 
lanes, each providing a bandwidth of 12.5 Gbps. This setup ensures a high-bandwidth, low-latency 
interface with the Volumetric Capturer, facilitating the efficient transfer of light-field data. Utilizing 
Direct Memory Access (DMA), the frame grabber card enables low-latency transfer of light-field 
streams from the frame grabber to the GPU memory. 

To meet the computational demands of processing light-field data in less than 100 ms, each R32 
camera is assigned its own GPU running a single instance of an IPU. However, the system architecture 
is designed to accommodate an arbitrary number of IPUs running on an arbitrary number of GPUs. This 
flexibility allows an IPU to leverage computational resources from multiple GPUs or process multiple 
light-field streams simultaneously on a single GPU. This scalable architecture ensures efficient 
utilization of hardware resources. 

The decision was made for the IPUs to convert the raw light-fields into RGBD streams rather than point 
clouds. RGBD streams offer more efficient resource utilization, particularly as they can be stored as 
textures directly on a GPU. Furthermore, RGBD streams provide deterministic memory requirements, 
a feature not necessarily guaranteed with point clouds, which can vary in the number of points. 
Additionally, using RGBD streams enables seamless interoperability with downstream processing by 
providing pointers rather than transferring the actual data, thereby significantly reducing latency and 
bandwidth demands. Moreover, established compression techniques can be readily applied to RGBD 
streams. Consequently, the conversion to point clouds is deferred until subsequent processing steps, 
where the benefits of the format outweigh its drawbacks, ensuring optimal utilization of resources 
throughout the processing pipeline. 

The accurate rendering of RGBD streams by IPUs relies on precise intrinsic and extrinsic calibration. 
While the intrinsic calibration ensures the accurate reconstruction of the geometry of the scene, the 
extrinsic calibration determines the position of each camera within the setup and how they relate to 
each other. Raytrix's LF-SDK calibration wizard currently facilitates calibration by requiring users to 
capture a sequence of known and precisely manufactured calibration targets. However, recording 
adequate calibration data can present challenges, especially for users unfamiliar with camera 
calibration procedures for accurate measurement tasks. This gap is addressed by ExCalibAR, an Open 
Call 1 awarded project. ExCalibAR aims to deliver a quicker, more user-friendly, and less error-prone 
calibration method accessible to non-expert users without the need for precise calibration targets. The 
ExCalibAR project aims to extract intrinsic and extrinsic calibration parameters by utilizing Structure 
from Motion (SfM) while moving the camera to its final position, capturing a final image from each 
camera once they are all in their final position. It will enable a non-expert user to calibrate the system 
to an accuracy of 5 pixels within 10 minutes.  

LoD adjustments are integrated into every processing pipeline stage. The R32 cameras offer flexibility 
by enabling the transmission of an arbitrary Region of Interest (RoI) or allowing pixel binning to macro 
pixels while ensuring that the IPUs maintain their calibration. Furthermore, IPUs can implement 
software-based RoIs to exclude already transmitted image areas from processing. The resolution at 
which the light-fields are rendered into RGBD streams can be tuned, allowing for adjustments to be 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 21 of 85 © 2023-2025 6G-XR Consortium 

made to both 2D and 3D data, even at different resolutions. Additionally, IPUs can be cloned to render 
the same input stream with varying parameters. Users have the option to adjust LoD settings through 
a user-friendly settings file or, for more granular adjustments, via a dedicated Application 
Programming Interface (API. 

3.2.3 Initial hardware 

The Euresys Coaxlink Quad CXP-125 serves as the frame grabber within the edge server, facilitating the 
transfer of light-field data from the Capturer. Complementing this, four Nvidia RTX 40906 GPUs, each 
equipped with 24GB of VRAM, are utilized to run the IPUs. 

3.2.4 Initial software 

An updated version of the Raytrix LF-SDK provides the IPUs and calibration wizards. The calibration 
wizards are set to be replaced by the results of ExCalibAR project. The LF-SDK currently runs on a 
Windows 10 or 11 host. ExCalibAR is currently under active development and has not yet reached the 
validation stage. 

 
5 https://www.euresys.com/en/Products/Frame-Grabbers/Coaxlink-series/Coaxlink-Quad-CXP-12-(1)nvidia  

6 https://www.nvidia.com/de-de/geforce/graphics-cards/40-series/ 

https://www.euresys.com/en/Products/Frame-Grabbers/Coaxlink-series/Coaxlink-Quad-CXP-12-(1)nvidia
https://www.nvidia.com/de-de/geforce/graphics-cards/40-series/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 22 of 85 © 2023-2025 6G-XR Consortium 

4 CLOUD/EDGE XR PROCESSING AND SCALABILITY 

This section presents the current status (first version) of the XR Enablers, which are related to 

cloud/edge XR processing, and that can provide scalability and wider access to the XR services. The 

component modules or units are described in the following subsections. 

4.1 SELECTIVE FORWARDING UNIT 

4.1.1 Overview of the component 

In traditional video conferencing services, Selective Forwarding Units (SFUs) are typically used for the 

exchange of multimedia information between the involved clients.  

6G-XR has departed from a functional SFU (outcome of EU H2020 VR-Together project7), built on top 
of Node.js8, that enables multi-user holographic communications [3]. In particular, the SFU acts as a 
UP AF that manages the exchange of volumetric video – and audio – streams from origin to destination 
clients via TCP WebSocket connections by using socket.io9, as illustrated in Figure 4. A more detailed 
architecture of the SFU is provided in Figure 5.  

Two main innovations are applied to that SFU component in 6G-XR. On the one hand, the SFU has been 

virtualized (both as a Docker and as a Helm Chart), thus becoming a VNF that can be dynamically 

instantiated over the cloud continuum (e.g., on a selected edge server), under request, via enablers 

from WP2 (Edge Orchestration, see D2.1 [4] for further details). On the other hand, novel interfaces 

with the Holo Orchestrator (Section 7.1) and a modular distribution architecture have been devised so 

that: (i) specific instances of SFUs can be selected for running sessions, based on specific criteria (e.g., 

deployment domains, edge resources); (ii) more than 1 SFU can be concurrently used to enhance the 

scalability of media sessions (Figure 6); and (iii) the SFU can also be interfaced to other in-cloud VNFs, 

like a Multipoint Control Unit (MCU) (Section 4.2) and a Remote Renderer (Section 4.3). 

When adopting an SFU for a session with N clients, each client sends in uplink 1 media (audio + video) 

stream to the SFU and receives N-1 streams (the ones from all the rest clients) from the SFU. This also 

means that, in total, the SFU needs to send N*(N-1) streams in downlink, which can become a 

bottleneck. If more than 1 SFUs are adopted for a given session, then each client still sends its media 

streams to a unique SFU but may receive media streams from all the active SFUs. The SFU is just in 

charge of data forwarding, but does not perform any media processing tasks, like stream multiplexing 

and/or transcoding. 

 
7 https://vrtogether.eu/ 

8 https://nodejs.org/ 

9 https://socket.io/ 

https://vrtogether.eu/
https://nodejs.org/
https://socket.io/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 23 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 4. High-level communication architecture when adopting a Selective Forwarding Unit (SFU). 

 

Figure 5. SFU Architecture. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 24 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 6. High-level scheme of a session with clients connecting to two different SFUs. 

The SFU is composed of two independent modules/services: 

1. Media Manager: It is responsible for forwarding the audio + video data between the involved 

clients. 

2. Events Manager: It is responsible for forwarding relevant metadata between the involved 

clients, like their positions in the virtual space, or any other certain events that can be 

originated/triggered in the media session (e.g., interactions with the environment). 

4.1.2 Requirements 

The SFU is a lightweight in-cloud media function in the sense that it does not have to process data in 

real-time, but just to manage their forwarding to the appropriate clients. 

In terms of KPIs, the SFU shall support at least 8 concurrent users per session, and multiple SFUs could 

be instantiated if such number needs to be increased (a dynamic decision maker to be implemented 

in the second phase of the project). 

One important requirement though is that it needs to be deployed on a server and network with 

enough bandwidth capacity (>=1 Gbps), as it becomes a traffic hub, and its output traffic becomes 

multiplicative as the number of users increases. 

Although technically an SFU could provide support for multiple concurrent sessions, its virtualization 

and modularization ease a new instantiation of the SFU per every new session being created. 

4.1.3 Initial hardware 

The SFU has been tested and run in a variety of Personal Computers (PCs) and Servers (both running 
Windows or Ubuntu), with no specific hardware requirements. It has been also successfully deployed 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 25 of 85 © 2023-2025 6G-XR Consortium 

on a server on the Microsoft Azure cloud computing platform with Standard DS1 v2 specs (1 vCPU, 3.5 
GiB memory RAM). 

4.1.4 Initial software 

The SFU requires the installation of Node.js and socket.io, and it has been successfully installed and 
run in Windows 10 and Ubuntu 22.04 LTS machines (including Virtual Machines on Azure). It has been 
also virtualized as a docker container and helm chart, which eases its deployment on any machines, 
including those provided by hyper-scalers. 

4.2 MULTIPOINT CONTROL UNIT 

4.2.1 Overview of the component 

In traditional video conferencing services, MCUs are typically used to lower the computation and 

bandwidth requirements at the client side, by performing stream multiplexing, transcoding, and 

composition functions on the cloud [5]. 

6G-XR has departed from a pioneer and fully functional Point Cloud MCU (outcome of EU H2020 VR-

Together project10) to enable more lightweight and scalable multi-user holographic communication 

services [5]. In particular, the MCU acts as a UP AF that receives all volumetric video (i.e., Point Cloud) 

streams from a given session, multiplexes and fuses them, and then performs smart transcoding 

features with the goal of providing a single personalized output Point Cloud stream to each involved 

user in the session. That allows reducing the bandwidth and processing requirements on the client 

side, and thus contributes to higher scalability and interoperability [5]. A high-level architecture of the 

MCU is provided Figure 7, which includes the main components and modules of the MCU and the 

interactions among them. A legend below the architecture diagram has been added to facilitate the 

meaning of each block. 

 
10 https://vrtogether.eu/ 

https://vrtogether.eu/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 26 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 7. MCU architecture. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 27 of 85 © 2023-2025 6G-XR Consortium 

The architecture of the MCU is structured into five main blocks, briefly explained as follows (further 

details can be found in [5]). 

1. Block 1 - Reception and Decoding  

The first block of the diagram is dedicated to the reception and decoding components. The very first 

component, called Packet Receiver, is in charge of establishing communications with the Holo 

Orchestrator. Once the MCU is added to the session, a Packet Receiver component, which is in charge 

of registering the actual participants of the holoportation session, keeps listening until one, or more, 

participants join. For each client (or participant) the MCU will instantiate a logic entity within a 

component called Player Containers. Each logic entity (indicated as Container User 1, 2, …, N), is used 

to store, for each user, the information needed by the MCU to perform its optimizations, such as user 

position and frustum (visible area coordinates). The Player Containers will provide an output to Block 

3 (explained afterwards in this section), every time a change of scene is detected (change of position 

or visible area). The last component of Block 1 is the Decoders Bank, which is in charge of decoding 

the incoming volumetric video frames and it is designed following a producer/consumer 

multithreading scheme, allocating one CPU thread to every decoder. Every time a new input frame is 

received, the first available thread will be allocated to perform the corresponding decoding process. 

The decoded volumetric frames are then available as colour component and geometry information. 

2. Block 2 - Volumetric Data Storage and Transformation  

The MCU receives volumetric data from all the holoportation participants, each of them with different 

local coordinate references. After the decoding of the streams, a transformation is needed. The 

Volumetric Data Transformer, in charge of performing the transformations of the volumes in world 

coordinates, includes a Compute Unified Device Architecture11 (CUDA) based implementation that 

performs the coordinates conversion to the global coordinates system and, at the same time, evaluates 

the corresponding bounding box. The output will be stored in a RAM-based component, called 

Volumetric Data Container, which is in charge of holding the transformed geometry data. Then, the 

remaining MCU components will be able to request the information stored here for the optimization 

of the streams. 

3. Block 3 - Field of View (FoV) Manager & Volumetric Data Collector  

To optimize the volumetric video streams delivered to each participant, the MCU needs to be aware 

of which participants are seen by each of the other participants, and in which positions they are. For 

this reason, the FoV Manager is in charge of processing frustum and position of the participant users, 

previously stored in the Player Containers (Block 1) and creating a list of participants that each client 

is seeing. The list is updated every time a scene change is detected in Block 1 and the final output 

provided to the rest of the pipeline (List of seen Participants 1, 2, …, N). For each participant, the 

system creates a component called Volumetric Data Collector that receives the recently created Lists 

of Participants. The Volumetric Data Collector knows: (i) the participants seen by each client needed 

to avoid streaming redundant data, and (ii) the relative positions of the users, coming from Block 1. 

 
11 https://developer.nvidia.com/cuda-toolkit 

https://developer.nvidia.com/cuda-toolkit


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 28 of 85 © 2023-2025 6G-XR Consortium 

The participants not seen are then removed from the data to be provided, while the resolution 

optimization, based on the relative distances, is performed in Block 4. 

4. Block 4 - Level of Detail Optimization  

Once the MCU is aware of which participants are seen by each participant, the resulting volumetric 

video has to be transmitted with a resolution that depends on the relative distance and positions 

between them. In 3D video, the usual nomenclature for the resolution is LoD. Block 4 is in charge of 

requesting the volumetric video, stored in the Volumetric Data Container (Block 2) with the highest 

LoD available, and subsampling the number of voxels depending on the distances between users. The 

goal is to reduce the amount of data to be delivered if the distance does not allow the user to 

appreciate the maximum resolution available. To know if the LoD needs to be reduced, Block 4 receives 

the LoD requested by the Volumetric Data Collectors (Block 3). If the LoD requested is the maximum 

allowed, the MCU will avoid performing redundant operations and will deliver the Volumetric Video 

as it was previously received. On the other hand, if the LoD requested is lower than the maximum, the 

process called LoD manager will be activated and will perform a CUDA based operation for the 

reduction of the LoD. The output will be the downsampled Volumetric Data. 

 

5. Block 5 - Fusion, Encoding and Transmission  

Block 5 is in charge of performing the Fusion previously described and of creating the scene to be 

delivered to each participant, thanks to the inputs created by the previous blocks. The first component 

involved is the Fusion Cache. The Fusion Cache receives the data related to the fused scene 

composition from the Volumetric Data Collectors (Block 3) and, when a set of volumetric videos has to 

be delivered, a process is activated to check if such scene has been previously created and stored. If 

the requested scene is not available in the Fusion Cache, the system performs the following steps: 

1. Request the needed Volumetric Data, after the LoD optimization, from Block 4. 

2. Perform a fusion of the Volumetric Data, from different participants. 

3. Provide the fused Volumetric Data to the Bank of Encoders, which will assign an encoding 

thread for each user. 

4. Transmit the corresponding encoded data to the clients. 

In addition, the MCU includes a smart system to avoid performing redundant operations. After the 

steps described above, the compressed fusion is indeed stored in the Fusion Cache for future use. 

Within Block 5 the system is indeed capable of analysing if a newly requested fusion was previously 

performed for another user. This may often happen given that several users, placed close to each 

other, may be observing the same area. In this case, the set of steps related to fusion and encoding 

are skipped and the previously created fusion is directly delivered. 

The next key innovations are being applied to that MCU component in 6G-XR. First, it has migrated to 
Linux to allow for its virtualization (VNF) and dynamic orchestration (WP2). Second, the mixing/fusion 
and transcoding features of the MCU have been decoupled, so they can be used independently or 
jointly for each instance of the MCU. Third, new interfaces between the MCU and Orchestrator and 
SFU components have been developed to enable the coexistence of multiple parallel MCUs per 
session, and even of the MCU with the newly developed SFU. These key innovations, and other planned 
ones, will be described with further details in the next deliverable D3.2 – “Final versions of XR 
enablers”. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 29 of 85 © 2023-2025 6G-XR Consortium 

4.2.2 Requirements 

The MCU is a heavy in-cloud media function in the sense that it must handle multiple resource 

intensive volumetric video streams and process them in real-time. It is typically deployed on cloud 

computing platforms in/for traditional videoconferencing services, but the implications / benefits of 

deploying it on Edge servers are assessed in the framework of 6G-XR for holographic communication 

services 

A series of associated requirements can be highlighted: 

• It shall be deployed on a server and network with enough bandwidth capacity (>=1 Gbps), as 

it becomes a traffic hub. 

• It shall exploit parallelization, GPU (e.g., NVIDIA RTX 3060 onwards) and CUDA processing. 

• It shall be dynamically orchestrated and instantiated, so development in Linux-based OSs 

becomes necessary. 

• It shall interface the evolved version of the Holo Orchestrator and SFU modules. 

• Multiple MCUs shall be deployed for single sessions. 

Likewise, a series of associated KPIs can be highlighted: 

• It shall support at least 12 concurrent users per session. 

• It shall be able to keep E2E delays within acceptable limits. 

4.2.3 Initial hardware 

The MCU has been successfully deployed in a server machine with Intel Xeon Gold 6140 @2.30GHz, 
with 2 NVIDIA GPUs (Tesla T4 16GB) and 2 Ethernet adaptors X550 TX 10 Gig LOM. Its deployment on 
other – more lightweight – machines will be explored later in the project. 

4.2.4 Initial software 

The MCU has been developed in C++. The initial version was developed and run on Windows and later 
migrated to Linux in 6G-XR project, mainly due to the better support for software virtualization / 
containerization. 

4.3 REMOTE RENDERER 

4.3.1 Overview of the component 

The operation of delegating computationally expensive processing to a remote server is called 

“computation offloading”. In the case of VR experience, the rendering operation is one of the most 

expensive tasks, requiring hardware acceleration (e.g., using GPUs) to process volumetric video stream. 

Moreover, it might also affect the battery life when using mobile devices. Offloading the computation 

to a remote server means performing the rendering task on a remote server equipped with hardware 

acceleration and sending back to the mobile device a plain video stream generated by rendering the 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 30 of 85 © 2023-2025 6G-XR Consortium 

volumetric video stream. As a result, the processing on the user’s device is lighter, and can run without 

requiring hardware acceleration.  

The use of remote rendering is perfectly aligned with the vision of the future 6G network, where 
cloud/edge services are expected to play an important role in enabling the processing of VR 
applications, and where the wireless access network should provide the improvements in data rates 
and latency, so it is not perceived that the rendering task is performed at the remote location instead 
of locally. Moreover, edge locations are meant to be closer to the user compared to cloud ones, which 
results in further improvements in terms of latency when the rendering tasks are performed at the 
edge instead of the cloud. 

This section describes the Remote Renderer developed in 6G-XR to enable access to VR experiences to 
devices that cannot support local rendering due to their low computational capabilities. The Remote 
Renderer consists in an UP AF that combines VR content rendering technologies and network 
virtualization to take advantage of the characteristics of the edge infrastructure to generate 
personalized media session for the participants of a VR experience. Thus, it is designed to be deployed 
as a VNF within the edge infrastructure of the 6G-XR project. 

The Remote Renderer is developed to render volumetric video content generated with a capture 
system into a VR scene. Then, it generates a plain 2D or 360o video stream by selecting a viewpoint 
inside the VR scene and delivers it to the user’s device. The output video stream can be personalized 
by means of the 6DoF information collected at the user’s device and shared with the Remote Renderer. 
The information is employed to adapt the viewpoint within the VR scene from which the plain 2D or 
360o video stream is generated. This allows user devices such as laptops or VR headsets to be freed 
from the processing load, relying on network communications to receive the already processed 
content. 

Figure 8 shows the logical modules of the Remote Renderer and the relation with the video players 
described in this report (Section 5.2 and Section 5.3). The Surrogate Player module acts similarly to a 
native video player, enabling the receiving and decoding of inputs from Holo Orchestrator, SFU and/or 
MCU, but avoiding displaying them. These inputs could be configuration messages and events provided 
by the Holo Orchestrator of the VR experience, or data sources from SFU/MCU, such as Point Cloud, 
2D/360o video and audio streams. While the configuration is immediately applied to any of the 
modules of the Remote Renderer, the data sources are rendered in the Rendering Engine module. The 
result of the rendering operation is a 2D/360o video stream with its audio taken by inserting a virtual 
camera and a virtual microphone within the VR scene. The stream is later used by the Streaming Server 
module, which encodes and sends it to the video player through the most appropriate streaming 
protocol. The Streaming Server also acts as a receiving endpoint of the 6DoF information generated in 
the video player and sent to the Remote Renderer. The 6DoF information is employed by the Rendering 
Engine module to adjust the virtual camera within the VR scene such that the resulting 2D/360o video 
is personalized considering the position and the viewpoint of the participant. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 31 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 8. Logical modules of the Remote Renderer and Video Player. 

The Streaming Server modules can generate both WebRTC and Dynamic Adaptive Streaming over HTTP 
(DASH) streams, even though the interaction of the user with the VR scene is available when using 
WebRTC only. WebRTC is the most appropriate protocol for interactive VR experiences as it has a data 
channel for sharing user’s 6DoF information and, most importantly, for its real-time latency. Due to its 
intrinsic latency, DASH is not suitable for interaction, but it is the best alternative when considering 
the scalability in terms of connected users to the VR experience. Consequently, the video player could 
be either a WebRTC or DASH player depending on the generated stream at the Remote Renderer. Both 
WebRTC and DASH players are presented in Section 5, when describing the adaptive low-latency XR 
delivery solutions of 6G-XR. 

Figure 9 shows the communication diagram of the Remote Renderer and its interaction with other 
components, such as the Monitoring System (Section 9.1), the Holo Orchestrator (Section 7.1) and the 
video player (Section 5.2 for WebRTC and Section 5.3 for DASH). To begin, the video player requests 
to join a VR session to the Holo Orchestrator, informing that it needs a remote endpoint to perform 
the content rendering. The Holo Orchestrator receives the request, assigns a Remote Renderer, and 
provides information to both the server and the player to configure the VR session. Then, the video 
player connects to the Remote Renderer to complete the session joining process. 

After the session is joined, three loops run in parallel: rendering, interaction, and configuration. In the 
rendering loop, the media processing and transmission take place. Volumetric video and audio are 
provided by external sources, such as SFU or MCU, to the Remote Renderer. Internally, the server 
decodes it (Surrogate Player), renders and applies the personalized viewpoint (Rendering Engine), and 
generates the encoded 2D or 360o video and audio stream (Streaming Server) that is delivered to the 
video player. Finally, the player decodes and visualizes it on the device screen. This loop is valid for 
both WebRTC and DASH communication between the server and the player. 

In the interaction loop, the video player collects the 6DoF information from connected sensors or input 

devices. This information, describing user’s movement (translation and/or rotation) within the 

rendered VR scene, is sent to the server which uses it to update the viewpoint to provide the 

personalized video stream. This loop is only valid for WebRTC streaming, as DASH does not provide 

sufficient low latency to allow a smooth interaction with the VR scene. It means that the personalized 

stream is provided only with WebRTC by employing its data channel to send the 6DoF information. The 

DASH stream is instead common to all the users, as they cannot interact with the VR scene. 

Finally, in the configuration loop, the video player captures metrics characterizing the streaming 

session and sends them to the Monitoring System. The Holo Orchestrator retrieves them (e.g., based 

on configured alarms if specific thresholds are surpassed) to take decisions on the encoding profiles 

that the Remote Renderer should use. The new encoding configuration is applied dynamically, 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 32 of 85 © 2023-2025 6G-XR Consortium 

although the process works differently for WebRTC and DASH. In WebRTC, the unique generated 

stream is adapted to match the provided configuration. In DASH, different representations are 

generated all the time, but the Media Presentation Description (MPD), consisting of a manifest that 

describes the streaming content, is periodically updated to show only the ones selected by the Holo 

Orchestrator at any moment. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 33 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 9. Communications diagram of the Remote Renderer. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 34 of 85 © 2023-2025 6G-XR Consortium 

4.3.2 Requirements 

To define the requirements, it is necessary to consider different factors that influence both the 

computational load of the Remote Renderer and the QoS and the Quality of experience (QoE) when 

using the Remote Renderer to access VR experience from the user’s device: 

• Management of heterogeneous sources: the server must be able to manage different input 

sources, including virtual scenes, volumetric video streams and audio. 

• Interaction capture: the player is not limited to display the already rendered content, but also 

shares user’s interaction information with the server. To do this, the player must be able to 

access sensors or input devices that generate this information. The server receives the 

interaction information and adapts the rendered video stream considering user's viewpoint. 

• User profiles: two different user profiles are envisioned to participate in a VR experience, 

namely interactive user and passive user. The first one has sensors to capture interaction 

information such that its video stream is personalized. In this case, the WebRTC protocol is 

employed to prioritize latency. The second one does not interact with the VR scene and its 

viewpoint is common to all the other passive users. In this case, a DASH stream is employed to 

prioritize scalability in terms of number of connected users. 

• Processing capacity: a higher number of users requires higher processing capacity. The use of 

GPU can cope with this by enabling hardware acceleration for both media rendering and media 

encoding processes. 

• Heterogeneous user equipment: the capabilities of the devices used to access the VR 

experience can vary between users. Both users connected with a laptop and users with VR 

headsets must be supported to enable a wider access to the VR experience. 

Considering the aforementioned factors, the requirements to be met by the Remote Renderer are 

identified and presented in Table 1. 

Table 1. Requirements for the edge rendering component. 

Category Requirement Details 

Inputs (data sources 

and configuration) 

Prerecorded point 
cloud 

Locally stored Point Cloud files or using socket.io 

communication 

Live point cloud Point Cloud using socket.io communication 

VR scene Local VR scene or using socket.io communication 

Audio Local prerecorded audio or live via socket.io 

communication 

Rendered data Output generation Virtual camera in VR scene to record video 

Virtual microphone in VR scene to record audio 

Format for 

interactive user 

Video: RAW 2D or 360o 

Audio: RAW Mono 

Format for passive 

user 

Video: RAW 2D or 360o 

Audio: RAW Mono 

Interaction Interactive user 6DoF information generated in the video player and 

transmitted to the server to generate the 

personalized stream. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 35 of 85 © 2023-2025 6G-XR Consortium 

The Renderer can serve one (single player mode) or 

multiple video players (multi-player mode). 

Passive user The user has no interaction. 

Transmission of 

interaction 

- Interactive user: WebRTC data channel 

- Passive user: not necessary 

Application of 

viewpoint 

Virtual camera movement in the scene 

Output codecs Interactive user Video: VP8 or H.264 

Audio: OPUS 

Mux: not employed 

Passive user Video: H.264 or HEVC/H.265 

Audio: AAC 

Mux: Fragmented MP4 

Output streaming 
protocols 

Interactive user WebRTC with bidirectional communications: 

- Video and audio over SRTP/UDP 

- 6DoF over data channel 

Passive user DASH with different video representations 

Streaming 

adaptation 

- WebRTC: dynamic adaptation of video stream 

(resolution, frame rate, bitrate) 

- DASH: update of MPD manifest to show different 

representations 

Processing OS Ubuntu 22.04 LTS 

Hardware - Intel i7 or Xeon CPU with 12 cores* 

- RAM 32GB DDR4* 

- NVIDIA with NVENC encoding support12 

*Recommended for 4 users, the actual requirements 

may vary depending on the number of connected 

users 

Software Unity and GStreamer 

Containerization Docker and Helm 

Communication with 
Holo Orchestrator 
and SFU/MCU 

Protocol Socket.io 

Messages and 

Events 

- Session management 

- Input source (audio and video) 

- Output configuration (codecs and protocols) 

 

The use of Unity13 as the framework for the development of the remote rendering system is a 

fundamental requirement to guarantee better compatibility and integration with the Holo 

Orchestrator and native players, also developed with Unity and based on i2CAT HoloMIT SDK14. 

 
12 https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/faq.html#issues-with-the-environment 

13 https://unity.com/ 

14 https://i2cat.net/holoportation-technology/ 

https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/faq.html%23issues-with-the-environment
https://unity.com/
https://i2cat.net/holoportation-technology/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 36 of 85 © 2023-2025 6G-XR Consortium 

GStreamer15 is one of the most widely employed multimedia framework and is used by VICOM to add 

further multimedia encoding and streaming capabilities to the Unity framework. 

All the requirements described in this section have been used to design and develop the initial version 

of the Remote Renderer. The hardware and software employed for this initial version are described in 

the following subsections. 

4.3.3 Initial hardware 

Regarding the hardware, a virtual machine with the following capabilities has been used to deploy and 

test the initial version of the Remote Renderer. The GPU is employed in passthrough mode and not 

shared with any other virtual machine. 

Table 2. Hardware employed to deploy the edge rendering component. 

Hardware Specifications 

CPU Intel Xeon 12 Cores (2095.076 MHz) 
RAM 32GB 

Storage 125GB 

GPU NVIDIA Quadro RTX 4000 

The above configuration allows the connection of up to 4 users with personalized audio and video 
streams (2 video streams having resolution 972x1080 each one of them) simultaneously. It is important 
to note that this initial release does not include all the required capabilities, and more processing is 
envisioned in the final release that could make the number of connected users to vary. For example, 
live point cloud stream ingestion is not yet supported. Processing such streams would be demanding, 
potentially reducing the number of simultaneous users. 

4.3.4 Initial software 

The current implementation of the Remote Renderer includes only two of the three logical modules: 

Rendering Engine and Streaming Server. It means that the current software can only render media 

content available locally and generate the video streams as output to be delivered to the connected 

users. The Surrogate Player will be added later to allow access to live media content from other 

components, such as SFU (Section 4.1) and/or MCU (Section 4.2). 

The features already available in the current release are: 

• Inputs: only pre-recorded and locally stored audio and video files (2D video or volumetric 

video/Point Cloud). 

• Rendering: audio and video already integrated into a predefined VR scene (still not possible 

to configure). Virtual camera and microphone also integrated into the VR scene to generate 

the outputs in 2D or 360o format. 

• Interaction: available through WebRTC data channel. Both information coming from laptop 

input devices (mouse and keyboard) and VR Headset (sensors and joysticks) are available. 

 
15 https://gstreamer.freedesktop.org/ 

https://gstreamer.freedesktop.org/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 37 of 85 © 2023-2025 6G-XR Consortium 

• Output codecs and protocols: all the required codecs and protocols are available, except 

HEV/H.265 video codec for DASH that will be added later. Since the codecs that will be 

employed are hardcoded, it is necessary to enable their selection through APIs. 

• Streaming adaptation: not available yet. 

• Containerization: both Dockerfile and Helm Chart are generated, although not deployed yet 

in the computing infrastructure of the 6G-XR project. 

• Communications with Holo Orchestrator and SFU/MCU: planned for a future release.  

The developed solution works in Ubuntu 22.04 OS LTS environment and includes Unity and GStreamer 

frameworks, where this last one is integrated as a Unity plugin. The programming languages of the 

solution are mostly C++ and C#. 

Table 3 lists the dependencies of the Remote Renderer, considering only the Rendering Engine and 

Streaming Server modules available in this first release. Further dependencies might be included when 

adding the missing Surrogate Player module. 

Table 3. Software dependencies of the Remote Renderer and their versions. 

Software and frameworks Version 

Unity 2021.3.31f1 

Unity Render Streaming 3.1.0-exp.7 

Vulkan 1.3.204 

GStreamer 1.22 

Nvidia driver 535.161.07 

Nvidia Cuda Toolkit 12.2 

Figure 10 shows the Remote Renderer running in the Unity Integrated Development Environment 

(IDE). A preconfigured virtual environment is presented where 3D objects can be added. A virtual 

camera and a virtual microphone are also elements that can be added in the VR scene to generate the 

sources for the output streams in WebRTC and DASH. 

 

https://unity.com/es
https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/index.html
https://www.nvidia.com/Download/index.aspx
https://www.nvidia.com/Download/index.aspx
https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-toolkit


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 38 of 85 © 2023-2025 6G-XR Consortium 

Figure 10. Remote Renderer running in Unity IDE. 

The Remote Renderer can work without Graphical User Interface (GUI), i.e., by enabling the headless 

mode of the Unity-based application and containerized. The containerized version runs with the 

software environment presented in Table 4. 

Table 4. Environment for the deployment of the containerization Remote Renderer. 

Software Version 

Ubuntu OS 22.04 

Docker 25.0.3 

Docker Compose 2.23 
Kubernetes 1.29 

Nvidia Container Toolkit 1.15.0 

NVIDIA GPU Operator 23.9.0 

In the following release, i.e., the final version of the Remote Renderer, the work will focus mostly on 

developing and integrating the missing Surrogate Player module. This will enable communication with 

the other components, such as the Holo Orchestrator, the SFU and/or MCU, that should provide the 

input data sources to be rendered. Moreover, to enable streaming adaptation strategies, metrics 

exporters will be created to collect data on WebRTC and DASH performance. Other improvements will 

include adding missing codecs and provide the possibility to be remotely configured by the Holo 

Orchestrator. 

 

https://ubuntu.com/
https://ubuntu.com/
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/index.html


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 39 of 85 © 2023-2025 6G-XR Consortium 

5 ADAPTIVE LOW-LATENCY XR DELIVERY 

This section presents the first versions of the XR Enablers developed to provide access to VR experience 
from heterogeneous devices, leveraging adaptive and low-latency multimedia delivery protocols. The 
different components are described in the following subsections, together with their respective 
requirements, as well as the corresponding initial software and hardware employed for the 
development. 

5.1 NATIVE PLAYER 

5.1.1 Overview of the component 

The endpoint for the clients of XR services consists of a native Unity-based player (Windows build), 

which implements: (i) the necessary session management features interfacing the Orchestrator; (ii) 

the processing and exchange of audio and volumetric video streams for the real-time communications; 

and (iii) a set of interaction and presentation features. The implementation details for the above-listed 

components and modules can be found in [3]. 

6G-XR has departed from a fully functional version of this Unity-based player (outcome of EU H2020 

VR-Together project16), whose features are provided as Unity package and associated SDK. The SDK is 

composed of the following key components: 

• HoloCore: it integrates core functionalities, such as multi-threading, thread safe queues, and 
the interfaces between core components the package. 

• Voice: It is used for audio communications, in charge of grabbing and encoding/decoding the 
audio of the users using state of the art audio codecs. 

• PointCloud: This component includes the E2E pipeline to be able to provide holograms as Point 
Clouds, including capturing (using Intel RealSense or Azure Kinect sensors, and currently also 
integrating Raytrix sensors), encoding/decoding (using anchor codecs), and rendering (with 
custom shaders that are able to read the information and render it in a 3D world). 

• SocketIO: This component implements the supported communications protocols to enable 
real-time multi-party data delivery, making use of a proper multithreading provided by 
HoloCore, and of WebSocket and Socket.IO libraries. 

The native players, integrating the SDK, communicate and exchange data between themselves via SFUs 

or via MCUs, as detailed in the respective sections of this report, and as sketched in Figure 11. 

 
16 https://vrtogether.eu/ 

https://vrtogether.eu/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 40 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 11. High-level system architecture to connect Unity-based players including the SDK to enable 
holographic communications. Note that the server box can represent either an SFU or MCU 

The next key innovations are being applied to that Unity-based player in 6G-XR. First, it is being adapted 

to integrate the volumetric capture setups from Raytrix (Section 3). Second, it is being adapted to allow 

dynamic rate control from the clients, based on the network-assisted Rate Control APIs provided by 

the network (WP4). Third, the SDK for holoportation is being migrated to Linux, so it can be integrated 

with the Remote Renderer component, then virtualized and dynamically orchestrated (provided by 

WP2). These key innovations, and other planned ones, will be described with further details in the D3.2 

– “Final versions of XR enablers”. 

5.1.2 Requirements 

The Unity-based player, integrating the SDK for holographic communications, needs to run on a 
desktop computer or laptop equipped Windows 10 VR-ready device and GPU capabilities (e.g., NVIDIA 
RTX onwards). That PC then connects via cable to a VR headset for media presentation.  
 
The player has been tested in Unity versions since v2020.3 one, with at least one of the Scriptable 
Render Pipelines and the new Input System active and enabled. 
 
In SFU mode, the player has successfully run in sessions with up to 12 concurrent users. In MCU mode, 
the player has successfully run in sessions with up to 16 concurrent users. 
  

5.1.3 Initial software 

The Unity-based player, integrating the SDK for holographic communications, needs to run on a 
Windows 10 VR ready device, and it has been tested with a variety of Unity17 versions, starting from 
2020.3 and including more recent ones, with a key requirement of having at least one of the Scriptable 
Render Pipelines and the new Input System active and enabled. 

 
17 https://unity.com/ 

https://unity.com/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 41 of 85 © 2023-2025 6G-XR Consortium 

5.1.4 Initial hardware 

The Unity-based player, integrating the SDK for holographic comms, needs to run on a Windows 10 VR 
ready device, like a desktop or laptop, with GPU capabilities (from NVIDIA RTX onwards). That PC then 
connects via cable to a VR headset for media presentation. Different VR headsets have been 
successfully tested so far, including Oculus Rift, Oculus Quest 1/2/3, Oculus PRO, and HTC VIVE. 

5.2 WEBRTC STREAMING TO WEB PLAYER  

5.2.1 Overview of the components 

This section describes the web video player for WebRTC streaming and interaction that works with the 
Remote Renderer described in Section 4.3. It also includes the description of the necessary WebRTC 
signalling server to negotiate multimedia and network parameters before starting the communications 
between the Remote Renderer and the player. 

The WebRTC protocol has been chosen because it is a widely employed solution for multimedia 

bidirectional communications in real-time scenarios and supported by most web browsers. It provides 

sub-second latency and enables to generate a personalized flow for each connected user (point-to-

point communication). Therefore, it is ideal to satisfy a scenario with interactive users. 

Figure 12 shows the fundamental elements of the WebRTC streaming solution composed of a server 
(Remote Renderer described in Section 4.3), which encodes and packages the content through 
standard codecs and protocols, and the Video Player (WebRTC Player). The WebRTC player has the 
role of receiving and decoding the content for display on the screen. The Signalling server is necessary 
during the initialization of the communication to negotiate media and network parameters. 

 

Figure 12. Components of WebRTC streaming. 

More in detail, the different components are: 

• Remote Renderer: this server, described in Section 4.3, includes a streaming server module 
capable of generating a WebRTC output. Moreover, it can receive the interaction information 
from the video player to personalize the video stream delivered though the WebRTC 
communication. 

• WebRTC player: this video player is responsible for receiving the video and audio streams sent 

by the Remote Renderer through the WebRTC protocol and playing them. It is equipped with 

interaction capabilities, meaning that it collects and sends user’s 6DoF information to the 

Remote Renderer. This player is based on web technologies that allow it to run within a web 

browser. As a result, it can run in any laptop where the interaction is provided through mouse 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 42 of 85 © 2023-2025 6G-XR Consortium 

and keyboard, or in a VR Headset, where the interaction is generated through the sensors and 

the joysticks. 

• Signalling server: the signalling server is an essential component in any WebRTC 

communication. It acts as an intermediary between the two peers of the communication, e.g., 

the Remote Renderer and the WebRTC player. Its main function is to facilitate the exchange 

of signalling information, such as negotiation of media session and connection parameters 

between the peers. 

Figure 13 shows the communications diagram of the three components of the WebRTC streaming 
solution, which is based on Figure 9 and adds more details when WebRTC is specifically employed for 
the communication between Renderer and player. After the session configuration and to initialize the 
WebRTC communication, the WebRTC player makes a negotiation request using an Offer SDP with its 
multimedia parameters, through the signalling server. The signalling server sends the offer to the 
Remote Renderer, which generates a response, i.e., Answer SDP, with its multimedia parameters. The 
generated response is sent to the signalling server which subsequently sends it to the player. After 
this, the Interactive Connectivity Establishment (ICE) candidates are defined for the negotiation of 
network parameters. Like SDP negotiation, the player sends its candidates to the Remote Renderer via 
the signalling server, and then the Remote Renderer responds by sending its ICE candidates. 

Once the negotiation is finished, the rendering loop starts. The Renderer renders the volumetric data 
and audio provided by external sources, such as SFU or MCU, applies the viewpoint and generates the 
2D or 360o video and audio output. Subsequently, the rendered data is sent to the WebRTC player 
though the communication channel established during the negotiation. 

In the interaction loop, the WebRTC player collects 6DoF information and sends it to the server through 
the WebRTC data channel. This information is employed by the Renderer to update the viewpoint and 
generate the personalized video stream. 

Finally, in the configuration loop, the video player uses getStats()18 function in order to retrieve 
WebRTC metrics from the web browser where it is running. Since getStats() is a function defined in the 
WebRTC standard, it should be available in any browser implementation. These metrics are transferred 
to the monitoring system, where the Holo Orchestrator can access them and make decisions on the 
encoding profile. In the end, the Renderer applies the chosen profile by modifying its encoder 
configuration. 

 
18 https://www.w3.org/TR/webrtc-stats/ 

https://www.w3.org/TR/webrtc-stats/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 43 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 13. Specific communications diagram for WebRTC protocol. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 44 of 85 © 2023-2025 6G-XR Consortium 

5.2.2 Requirements 

To define the requirements, the following factors for the WebRTC streaming solution are to be 
considered: 

• Delay in video distribution: the delay between generation of content on the Renderer and its 
display on the player can affect the quality of the user experience. Real time latency (sub-
second) is an essential factor in future XR services to provide a solid and natural experience 
between different participants. 

• Interaction with the VR scene: interactive users have tight requirements in terms of latency 
since it affects their ability to interact with the VR environment. It means that the data channel, 
employed to transmit the 6DoF information and the video/audio channels, and the viewpoint 
application must also work in real time. 

• Variability of access network: when a wireless access network (Wi-Fi or mobile network) is 
used to connect the Renderer and the player, it is necessary to consider that the coverage can 
vary from time to time. This can affect video playback, causing artifacts or video freezes, when 
the delivery cannot be performed due to insufficient transmission resources (jitter, bandwidth, 
etc.). The WebRTC stream must be flexible to allow dynamic video encoding configuration in 
real time. This helps to compensate for the variability of the access network and not 
compromise the stability, fluidity and latency of the transmitted video. 

• Heterogeneous user equipment: the capabilities of the devices used to access the experience 
can vary between users. Both users connected with a laptop and users with a VR headset must 
be supported. It results that the WebRTC player must be lightweight and run in web browsers 
included in laptops and VR headsets. 

Considering the aforementioned factors, the requirements of the WebRTC streaming components, 

such as WebRTC player and signalling server (Remote Renderer already presented in Section 4.3), have 

been identified and presented in Table 5. 

Table 5. Requirements of the WebRTC streaming components. 

Category Requirement Details 

Audio and 

video formats 

to stream 

2D video Format: RAW video 

Maximum resolution: 4K 

Maximum frame rate: 60fps (maximum frame rate depends 

on configured resolution and processing hardware) 

360o video Format: RAW video 

Maximum resolution: 4K 

Maximum frame rate: 60fps (maximum frame rate depends 

on configured resolution and processing hardware) 

Audio Mono 

Encoding Interactive user Video: VP8 or H.264 

Audio: OPUS 

Mux: not employed 

Protocols Audio and video 

streaming 

SRTP/UDP audio and video channels included in WebRTC 

Interaction 

through 6DoF 

information 

Bidirectional data channel included in WebRTC 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 45 of 85 © 2023-2025 6G-XR Consortium 

Signalling / 

negotiation 

WebSocket communications for SDP and ICE negotiations 

Video 
adaptation 

Interactive user Performed in the Remote Renderer by means of WebRTC 

metrics provided by the WebRTC player 

Supported 

devices 

Interactive user 

device 

Web browser on laptop or VR headset 

Processing OS Signalling server: Ubuntu 22.04 LTS 

WebRTC player: any OS that includes a web browser 

Hardware Signalling server: any HW capable to run a Node.js 

application 

WebRTC player: any HW with support for CPU or GPU video 

decoding 

Software Signalling server: Node.js 

WebRTC player: 

- Laptop: Chrome web browser 

- VR headset: web browser embedded in the VR headset 

Containerization Docker and Helm 

 
 
 

 

5.2.3 Initial software 

Signalling Server: 

The Signalling Server is a Node.js19-based application. It is implemented with JavaScript and TypeScript 

programming languages. Since its only functionality is to provide connection between the two WebRTC 

peers (Remote Renderer and WebRTC Player), it embeds a library for enabling WebSocket 

communications. 

The software dependencies and their versions are shown in Table 6. 

Table 6. Software versions used in the signalling server. 

Software and frameworks Version 

Node.js 21.2.0 

@types/ws (Node.js WebSocket library) 8.5.3 

 

WebRTC Player: 

The WebRTC Player is implemented with native WebRTC technologies. To improve the visualization 

and allow both 2D and 360o videos, A-Frame20 has been integrated. A-Frame is an open-source web 

 
19 https://nodejs.org/en 

20 https://aframe.io/ 

https://nodejs.org/en
https://aframe.io/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 46 of 85 © 2023-2025 6G-XR Consortium 

framework developed by Mozilla that is specifically designed for building VR experiences on the web. 

It simplifies the creation of VR content by providing an HTML-based declarative syntax that allows 

developers to define 3D scenes and interactions directly on their web pages. It can be used from any 

device that has a web browser with WebXR. 

The WebRTC Player is also responsible for capturing 6DoF information from input devices (keyboard 

and mouse if using a laptop, or sensors and joysticks if using a VR headset). This information is used to 

enable the interaction of users with each other and with the 3D virtual environment. The resulting 

WebRTC Player is shown in Figure 14. 

The development used mainly JavaScript programming language. For the deployment, Node.js21 and 

Vite22 are employed.  

The software dependencies and their versions are shown in Table 7. 

Table 7. Software versions used in the WebRTC Player. 

Frameworks Version 

Node.js 21.2.0 

Vite 4.5.0 

A-Frame 1.4.2 

 

 
21 https://nodejs.org/en 

22 https://vitejs.dev/ 

https://nodejs.org/en
https://vitejs.dev/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 47 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 14. WebRTC Video Player. 

5.2.4 Initial hardware 

Regarding the hardware on which the Signalling Server and WebRTC Player are implemented, it is 
important to note that both are hardware-agnostic. It means that they do not require any specific 
hardware, as they can be deployed as Node.js containerized applications. 

The WebRTC Player is tested by using the Chrome web browser when accessing with a laptop, and the 
Browser application included in the Meta Quest 223 VR headset. 

5.3 DASH STREAMING TO WEB PLAYER 

5.3.1 Overview of the components 

This section describes the web video player for DASH streaming that works with the Remote Renderer 
described in Section 4.3. It also includes the description of the necessary HTTP Server where the DASH 
MPD and its audio and video segments are stored to be served to the video player. Although DASH has 
higher latency compared to WebRTC (Section 5.2), it is still a valid option when the interaction with 
the VR scene is not required. 

 
23 https://www.meta.com/es/en/quest/products/quest-2/ 

https://www.meta.com/es/en/quest/products/quest-2/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 48 of 85 © 2023-2025 6G-XR Consortium 

DASH is the widely employed solution for multimedia communications when scalability rather than 
real time is sought. DASH is based on the HTTP protocol which ensures extensive scalability compared 
to WebRTC. However, its disadvantage is its intrinsic delay of the multimedia communication due to 
media segments creation. Thus, it is not suitable for interactive communications, but it is considered 
the ideal fit for passive media consumption, where the interaction is not necessary, and the higher 
scalability allows a wider number of participants. It means that all the participants have the same 
viewpoint from which they participate in the VR experience without interacting with it. 

Figure 15 shows the fundamental elements of the DASH streaming solution composed of the DASH 

stream producer, i.e., the Remote Renderer described in Section 4.3, which encodes and packages the 

content through standard audio and video codecs, and the DASH stream consumer, i.e., the DASH 

Player, which receives and decodes the content for displaying it on the screen. Between them, a 

common HTTP Server is necessary to store the MPD and segments generated by the Remote Renderer 

and serve them to the DASH player. 

 

Figure 15. Components of DASH streaming. 

More in detail, the different components are: 

• Remote Renderer: as described in Section 4.3, this server includes a streaming server module 
capable of generating a DASH output. A DASH stream consists of a MPD manifest describing 
the content, and media segments where the audio and video data are encoded. All these files 
are written locally in the server. In this case, no interaction information from the video player 
is received as the DASH stream is unique for all connected participants. 

• HTTP Server: when generating the DASH stream, the Remote Renderer creates the MPD 
manifest and the segments and then write them on the disk. It does not provide any network 
capabilities to deliver them to the video player. For such a reason, this HTTP server is necessary 
to serve the generated files (MPD and segments) to the video player through HTTP. 

• DASH player: this video player is responsible for performing HTTP request to the HTTP server 

to download the DASH stream, decode its content and display it. It does not provide any 

interaction capabilities. This player is based on web technologies that run within any web 

browsers. 

Figure 16 shows the communications diagram of the streaming solution using DASH, which is based on 
Figure 9 and adds more details when DASH is specifically employed for the communication between 
the Remote Renderer and the player. After the session establishment and configuration, the rendering 
loop starts to render volumetric video content provided by an external source, such as SFU or MCU. 
The Remote Renderer generates the rendered representation in 2D or 360o format and encodes it with 
H.264 or HEVC/H.265 codecs for video and AAC codec for audio. The encoding process of the video 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 49 of 85 © 2023-2025 6G-XR Consortium 

(not the audio) could be performed up to three times to generate three different representations of 
the same video and exploit the adaptive streaming capabilities of the DASH protocol. These three 
parallel encoding processes do not affect the latency if all of them are performed in real time 
(hardware acceleration is required to achieve it). The encoded files are subsequently multiplexed into 
MP4 and segmented. The MP4 segments are stored on the HTTP server and the MPD manifest is 
generated with the segment information so that the DASH player can perform HTTP requests to receive 
the MPD manifest and MP4 segments. Finally, the DASH player decodes the segments and views them 
on the user’s device screen. 

When using DASH for passive consumption, there is no interaction loop as in WebRTC. The 
configuration loop is the only one which runs in parallel to the rendering loop. The DASH player 
performs measurements while downloading the DASH segments and sends them to the monitoring 
system. The Holo Orchestrator can access these metrics to make decisions on the video 
representations included into the MPD manifest. It means that, even the remote renderer generates 
all the video representations configured when starting the stream, not all of them are shown to the 
DASH player. For example, the Holo Orchestrator might detect that the current state of the network 
does not provide enough transmission capacity to allow timely reception of the highest representation 
and then, it decides to remove it from the MPD manifest. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 50 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 16. Specific communications diagram for DASH protocol. 

5.3.2 Requirements 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 51 of 85 © 2023-2025 6G-XR Consortium 

To define the requirements, the following factors for the DASH streaming solution have been 
considered: 

1. Latency and synchrony in video distribution: when using DASH, the user already accepts to have 

higher latency compared to WebRTC, but it does not accept asynchronous visualization. All the 

participants should be visualizing the same video instant of the overall video stream, otherwise 

they could experience a different quality (QoE). 

2. Video delivery scalability: the variable number of users affects the processing capabilities needed 

to generate the output video streams. Video encoding tasks are compute-intensive and can rely 

on GPU hardware acceleration solutions to increase scalability. 

3. Access network variability: when a wireless access network (Wi-Fi or 5G/6G cellular network) is 

used to connect Renderer and player, it is necessary to consider that the coverage can vary from 

time to time. This can affect video playback, causing artifacts or video freezes, when the delivery 

cannot be performed due to insufficient transmission resources (jitter, bandwidth, etc.). The DASH 

stream must allow the creation of different video representations of the same video content such 

that each player can decide the one that fits with the network status. The server can also influence 

the decision of the player by adding or removing the representations available in the MPD. Each 

video representation is characterized by a specific encoding configuration. This strategy is based 

on periodical update of the MPD and helps to compensate for the variability of the access network 

and not compromise the stability, fluidity and latency of the transmitted video. 

4. Heterogeneous user equipment: the capabilities of the devices used to access the experience can 

vary between users. Both users connected with a laptop and users with a VR headset must be 

supported. It results that the DASH player must be lightweight and run in web browsers included 

in laptops and VR headsets. 

Considering the aforementioned factors, the requirements of the DASH streaming components, such 

as HTTP server and DASH player (Remote Renderer already presented in Section 4.3), have been 

identified and presented in Table 8. 

Table 8. Requirements of the DASH streaming components. 

Category Requirement Details 

Audio and 

video 

formats to 

stream 

2D video Format: RAW video 

Maximum resolution: 4K 

Maximum frame rate: 60fps (maximum frame rate depends on 

configured resolution and processing hardware) 

360o video Format: RAW video 

Maximum resolution: 4K 

Maximum frame rate: 60fps (maximum frame rate depends on 

configured resolution and processing hardware) 

Audio Mono 

Encoding Passive user Video: H.264 or H.265 

Audio: AAC 

Mux: Fragmented MP4 

Protocols Type of MPD Live MPD with periodical updates 

MPD delivery HTTP request form DASH player to HTTP server 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 52 of 85 © 2023-2025 6G-XR Consortium 

Media segment 

delivery 

HTTP request form DASH player to HTTP server 

Video 
adaptation 

Passive user Performed in the Remote Renderer by means of DASH metrics 

provided by the DASH player 

Supported 

devices 

Passive user 

device 

Web browser on laptop or VR headset 

Processing OS HTTP server: Ubuntu 22.04 LTS 

DASH player: any OS that includes a web browser 

Hardware HTTP server: any HW capable to run a Node.js application 

DASH player: any HW with support for CPU or GPU video 

decoding 

Software HTTP server: Node.js 

DASH player: 

- Laptop: Shaka-player running in Chrome web browser 

- VR headset: Shaka-player running in web browser 

embedded in the VR headset 

Containerization Docker and Helm 

 

5.3.3 Initial software 

HTTP Server: 

The HTTP Server is a simple Node.js application using the default HTTP-Server library to serve files. The 

software dependencies and their versions are shown in Table 9. 

Table 9. Software versions used in HTTP Server. 

Software and frameworks Version 

Node.JS 12.22.9 

HTTP-Server 14.1.1 
 

DASH Player: 

The DASH Player is based on the Shaka Player and deployed with Node.js. The software dependencies 
and their versions are shown in Table 10. 

Table 10. Software versions used in DASH Player. 

Software and frameworks Version 

NodeJS 12.22.9 

Shaka Player 4.3.0 

Figure 17 shows a demonstration of the Dash Player where a comparison with the source is made. 
Source (Remote Renderer on the left) and destination (DASH Player on the right) communicate locally 
(localhost), having a latency of approximately 3 seconds. Further tests will be performed later when 
the Remote Renderer and HTTP Server will be deployed in the Edge infrastructure. 

https://nodejs.org/en
https://shaka-player-demo.appspot.com/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 53 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 17. DASH Player based on Shaka Player. 

5.3.4 Initial hardware 

Regarding the hardware on which the HTTP Server and DASH Player are implemented, it is important 
to note that both are hardware-agnostic. It means that they do not require any specific hardware, as 
they can be deployed as Node.js containerized applications. 

It is important to note that the HTTP Server needs to serve the content generated by the Remote 
Renderer described in Section 4.3. As a result, in this first release it has been containerized together 
with the Remote Renderer. 

The DASH Player is tested by using Chrome web browser when accessing it with a laptop. 

 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 54 of 85 © 2023-2025 6G-XR Consortium 

6 MULTI-MODAL SYNCHRONIZATION 

In the 6G-XR project, device and media synchronization play a key role, as the project deals with real-
time streaming and communications involving various sensors, streams, media modalities, and 
distributed users. 

This section analyses the alternatives for media synchronization according to 3GPP and presents the 
first versions of clock and media synchronization mechanisms used in 6G-XR to support the XR Enablers 
that have time constraints or perform time-dependent processing. 

6.1 OVERVIEW ON SYNCHRONIZATION IN 3GPP 

In this section, we present the proposed synchronization procedures for XR and multi-modal 
applications. For exploiting these results, we have chosen to peruse potential standardization 
opportunities, and therefore, implementation of these procedures will be out of scope for 6G-XR. 

6.1.1 Network-assisted media synchronization in 3GPP 

Table 11 includes information that may be used for synchronization. The synchronization status 
parameters may include those that may be used to associate UE(s), Protocol Data Unit (PDU) 
Session(s), and Data Flow(s) that are part of the same multi-modal data set. The identifying information 
may be an XR and Media services (XRM) session identifier. Data Flow(s) may be identified with an IP 5-
Tuple. PDU Session(s) may be identified with a PDU Session ID. UE(s) may be identified by an 
International Mobile Subscriber Identity (IMSI), Subscription Concealed Identifier (SUCI), or External 
Identifier. 

Table 11. Synchronization Parameters. 

Information Element Description / Examples 

XRM Session 

Identifier 

The XRM Session Identifier is identifying Information that can 

be used to associate the rest of the information in this table 

with UE(s), PDU Session(s), and Data Flow(s) that are part of 

the same multi-modal data set. 

Presentation Time Presentation time may be used to synchronize an application’s 

separate (single-modal) data streams (e.g., audio, video, 

subtitles) when the media are presented to the user. 

Presenting to user includes (but not limited to) video frame 

being displayed on a display, sound played out through 

speakers, haptic information being conveyed to user through 

actuation.  

PDU Set 

arrival/received time 

The PDU Set arrival/received time is the timestamp specifies 

the time a specific PDU Set has been received by the UE. The 

PDU Set may be identified with a combination of an XR Session 

ID, a PDU Set identifier, and a Synchronization Group Identifier. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 55 of 85 © 2023-2025 6G-XR Consortium 

Payload/Content 

type 

The Payload/Content type indicates the type of data that is 

associated with the synchronization information (e.g., audio, 

video, haptic). This information is helpful because 

synchronization threshold requirements differ per each type of 

mode. Therefore, along with timing information, the 

Payload/Content type can be sent.  

Synchronization 

Error Calculations 

Synchronization Error Calculations indicate the time difference 

between any two data flows (e.g., audio-video, video-haptic). 

Per each flow of data being used by the application, the 

synchronization error value is calculated. Either PDU Set 

arrival/received time, or the presentation time could be used 

for calculating this value. Alternatively, synchronization error 

values of both PDU Set arrival/received time and presentation 

times may be used. In case some flows are distributed among 

other UEs, a single UE receives/collects PDU Set 

arrival/received time or the presentation time information 

from other UEs for calculating this value(s). The flows may be 

identified with a PDU Set Flow Identifier, a Synchronization 

Group Identifier, or an IP 5-Tuple. 

Synchronization 

Information that was 

collected from other 

UEs 

This information may be collected via device-to-device 

communications and may indicate the degree to which two or 

more flows are synchronized. The information may be 

expressed in units of time. The Flows may be identified with a 

combination of UE identifier, XR Session ID, a PDU Set 

identifier, and a Synchronization Group Identifier. The UE 

identifier may be a GPSI, IP Address, or a 5G-S-TMSI. 

Information about 

buffer overflow or 

underflow events 

This information may indicate the number, or frequency, of 

buffer overflow or underflow events. The information may be 

associated with a flow identifier (e.g., a PDU Set Flow or an IP 

5-tuple). 

 
 

6.1.2 Detecting synchronization status 

A UE may detect that data from a flow that the UE is transmitting or receiving is not sufficiently 
synchronized with a second flow. The second flow may be associated with the UE or a second UE. 

For instance, as shown in Figure 18, a UE may send the synchronization information and the 
information about the associated PDU Session, IP 5-tuple, or QoS Flow to the network in a NAS-SM 
message. The message may be received by the Session Management Function (SMF) that is associated 
with the PDU Session. The SMF may use the information to take actions such as sending updated QoS 
Rules to the UE or QoS Enforcement Rules (QER) to the User Plane Function (UPF). The SMF may also 
forward the synchronization information to the Policy Control Function (PCF) so that the PCF may 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 56 of 85 © 2023-2025 6G-XR Consortium 

update Policy and Charging Control (PCC) Rules or UE Route Selection Policy (URSP) rules. The SMF 
may also forward the synchronization information to the Network Data Analytics Function (NWDAF) 
so that the NWDAF may consider the synchronization information when generating network data 
analytics. 

PCF

0. PDU Session 
Established and 
associated with 
multi-modal set.

1. Synchronization 
Status Information 

prepared

2. NAS – MM Message

NWDAFUPFSMFAMFUE AS

3. Provide NAS – SM 
Message; Synchronization 

Status Information

5. Provide Synchronization Status Information to PCF

6. Provide Synchronization Status Information to NWDAF

7. Provide Synchronization Status Information to AS

4. Provide Synchronization Status Information to UPF

 

Figure 18. Exemplary Procedures for Synchronization Status Reporting via the Control Plane. 

Alternatively, Figure 19 illustrates an example where the synchronization status information is sent to 

the network via UP signalling. The UP signalling may terminate at an Application Server (AS) and the 

AS may forward the synchronization status information to network functions and/or trigger network 

functions to take action to improve the overall QoE. The X5 interface is an example of an interface that 

may be enhanced to allow the UE hosted application to send synchronization status information over 

the UP. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 57 of 85 © 2023-2025 6G-XR Consortium 

 

Application ME SMF AF
XR Session 
Handler

AMF

1. Synchronization Status 
Information prepared

UE

2. Send Synchron ization Status Information via X5

3. 5GXR AF uses the received Synchronization 
Status Information and triggers some actions

0. PDU Session 
Established and 
associated with 
multi-modal set.

 

Figure 19. Exemplary Procedures for Synchronization Status Reporting via the User Plane. 

PCF

1. Detect that 
flows are not 
synchronized

2a. Synchronization Request

UPFSMFAMFUE ASNEF

2b. Synchronization Request

2d. Synchronization Reply

2e. Synchronization Reply

3a. Synchronization Request

3b. Synchronization Reply
4. N4 Session Modification Request

5. Apply delay to 
the traffic of the 
identified flow(s)

6. Re-Check 
Synchronization 

Status

2c. Update 
PCC Rules

 

Figure 20. Exemplary Procedures for Network-Assisted Media Synchronization. 

Figure 20 demonstrates procedures for network-assisted media synchronization. The UE may detect 
that a first flow is not synchronized with one or more other flows (PDU sets, PDUs). 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 58 of 85 © 2023-2025 6G-XR Consortium 

The UE may send an application layer message to an AS to indicate that the first flow is not 
synchronized with one or more other flows. The request from the AS/Network Exposure Function (NEF) 
triggers the PCF to send updated PCC rules to the SMF. 

Alternatively, the UE may send a Synchronization Request to the SMF directly. This message may 
indicate that the first flow is not synchronized with one or more other flows.  

Accounting for the synchronization error, if any, SMF may send an N4 message to the UPF to configure 
the UPF to introduce a delay to one or more flows to ensure synchronous delivery of inter-related data. 

6.2 CLOCK SYNCHRONIZATION 

In the 6G-XR project, synchronization across VNFs (XR Enablers) deployed in computing infrastructure 

and end user applications running on UE, are major requirements to enable the accurate execution of 

time-dependent or delay-sensitive operations. As a result, the 6G-XR project employs two different 

synchronization methods to improve the overall synchronization capabilities when deploying the 

developed XR Enablers: Clock synchronization, described in this section, and Media synchronization, 

described in Section 6.3. 

6.2.1 Overview on clock synchronization protocols 

Clock synchronization is necessary in order to provide the correct time to any device or host that 

execute any XR Enablers. The, in this section the alternatives for clock synchronization are compared 

to select the appropriate one for the 6G-XR project.  

Network Time Protocol (NTP) and Precision Time Protocol (PTP) represent the most employed 

protocols to provide system clock synchronization. Table 12 describes the main differences between 

them. 

Table 12. Comparison between NTP and PTP. 

Feature NTP PTP 

Accuracy Millisecond Sub-microsecond 

Synchronization 

mechanism 

NTP Client requests to NTP 

Server 

PTP Grandmaster sends information 

to slaves 

Scope Wired and Wireless networks Only Ethernet networks. Research 

activities within SNS projects to 

enable wireless networks. 

Hardware 

requirements 

Hardware-independent Specific Ethernet adapters 

Both protocols enable the exchange of 64 bits timing information, but PTP provides better accuracy as 

relies on hardware timestamping instead of software implementation. Moreover, concerning 

synchronization mechanism, NTP relies on a client-server communication, while PTP relies on a master-

slave one. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 59 of 85 © 2023-2025 6G-XR Consortium 

Finally, NTP is more flexible in terms of network that can be employed as it works with any networks, 

while PTP works only with Ethernet as enabler for deterministic networking. Research activities to 

enable deterministic networking on wireless networks, including synchronization based on PTP, is still 

ongoing in SNS projects (e.g., DETERMINISTIC6G24 and PREDICT-6G25 projects). 

6.2.2 Requirements and implementation 

Table 13 presents the requirements concerning clock synchronization. It is remarkable that all the 
requirements are satisfied by employing a standard protocol such as NTP to synchronize the clock of 
the hosts at the edge where Media Functions run or of the UEs with the client application. 

Table 13. Clock synchronization requirements. 

Category Requirement Description 

Telemetry Host OS to provide correct 

timestamp to metric 

exporters 

Metric exporters employ timestamps to relate 

the measurement to the exact time it was 

generated. This is necessary for real-time 

operations or post-processing. 

Media 

Streaming 

Host OS to provide correct 

date/time to web 

browsers 

Default implementation of web video players 

employ date/time provided by Host OS to the 

web browser in order to synchronize. 

Media 

Streaming 

Host OS to provide correct 

date/time to Unity 

environment 

Default implementation of Unity-based 

applications employ date/time provided by 

Host OS to the Unity environment in order to 

synchronize. 

The necessary clock synchronization for Media Functions and Monitoring System of 6G-XR will use NTP 

protocol due to several reasons that makes it more suitable than PTP: 

• NTP works independently on the network type (wired or wireless) and network adapter, while PTP 
only works with Ethernet and with compatible network adapters. It means that NTP provides more 
flexibility as it can be employed both to synchronize Media Functions at the edge with Ethernet 
and UEs with wireless adapters (Wi-Fi or 5G). PTP would limit the synchronization only to Ethernet 
connected devices. 

• Even if the accuracy of PTP (microseconds) is higher than NTP (milliseconds), such accuracy is not 
needed by Media Functions where the minimum appreciated error delay depends on the frame 
rate of the streamed video. Employing a high frame rate such as 60 fps means a minimum delay 
of 16 ms between frames, which is 10x higher than the error that can be caused by NTP. 

• Monitoring System and Media Functions developed in 6G-XR work independently from the 
protocol employed for clock synchronization, as they rely also on media synchronization 
mechanisms to improve the synchronization. Moreover, both NTP and PTP expose 64 bits timing 

 
24 https://deterministic6g.eu/ 

25 https://predict-6g.eu/ 

https://deterministic6g.eu/
https://predict-6g.eu/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 60 of 85 © 2023-2025 6G-XR Consortium 

information to the system that can be accessible by any functions running on the system itself. It 
means that NTP could be substituted in the future by PTP, when wireless adapter will be enabled, 
and the application will have in any case 64 bits of timing information. 

Media Functions will be deployed as Helm Charts26 within Linux-based environments (e.g., Ubuntu). 
Thus, NTP implementations of NTP Server and NTP Client are widely available in Linux environment 
and can easily be deployed to provide timestamp information to the applications. 

The NTP Server could be either public or private, deployed in one of the Edge infrastructures of the 
6G-XR project. In both cases, an NTP client is deployed and configured in any Host OS to access the 
NTP Server and synchronize itself. 

6.3 MEDIA SYNCHRONIZATION 

Media synchronization represents a further step to improve synchronization among XR Enablers, as it 
moves from providing exact time to devices and hosts (clock synchronization, described in Section 6.2) 
to also providing exact time to the application. Thus, the media synchronization employed to improve 
the application layer synchronization of any XR Enablers is described in this section. 

In the context of 6G-XR and its use cases, media synchronization is needed for the following operations: 

• Estimate E2E delays: the delay across different modules of the E2E chain can be measured only by 

having an accurate synchronization of each module. This allows to correctly generate timestamps 

to be applied to every Media Unit (MU) (i.e., video frame or audio sample). 

• Performance monitoring: to collect performance metrics from the planned UCs, the 

synchronization of the host system where the VNFs (XR Enablers) are deployed is necessary. The 

objective is to employ performance metric exporters whose information has the correct 

timestamp. Thus, it is possible to relate the collected measurements to the exact time they were 

generated and to perform real-time operations or post-experiment data processing. 

• Launch and/or activate features of the XR Enablers whenever needed: some features provided by 
the XR Enablers depend on clock synchronization. For example, the DASH Player uses current 
timestamp to calculate media segments to download time to time from the HTTP Server. 

• Media service operations: some media services might have tight timing constraints. For example, 
any XR interactive applications, where the user can interact with the VR scene, need to work in 
real-time as they are highly sensitive to time delay. A delay in user interaction directly affects its 
QoE and might also cause motion sickness. 

In the end, enabling all the operations mentioned above guarantees consistency when processing 
several media streams at the same time (e.g., synchronized audio and video to avoid lip-sync issues) 
and enables a coherent XR experience when one or more users enter a VR scene (e.g., a movement in 
the physical world must be synchronized with the VR representation). 

 

 
26 https://helm.sh/docs/topics/charts/ 

https://helm.sh/docs/topics/charts/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 61 of 85 © 2023-2025 6G-XR Consortium 

6.3.1 Requirements and implementation 

In this section, the requirements of 6G-XR Media Functions in terms of media synchronization, the 
specific implementations carried out, and the solutions already integrated with the Media Functions, 
are explained. 

The required different media synchronization variants and features, together with the specific 

implementations or integration carried out to fulfil them, are outlined in Table 14. 

Table 14. Media synchronization requirements and carried out implementations. 

Category Requirement Implementation 

Intra-media 

synchronization 

The captured Media Unit 

(MU), i.e., video frame and/or 

audio sample, at the source 

needs to have an accurate 

timestamp that must be 

preserved until reaching the 

destination client. 

Timestamps are inserted into each 
MU, based on the clock of the host, 
and preserved during media 
encoding and transmission. 

The SFU needs to preserve the 

original timing patterns of 

MUs for each of the 

incoming/outcoming streams. 

The SFU does not modify 
timestamps, and it waits until the 
entire MUs are received to relay 
them. 

Inter-media 

synchronization 

The original temporal 

dependence (synchrony) 

between MUs of different 

media streams originated by 

the same origin needs to be 

preserved until reaching the 

destination client (i.e., 

avoiding lip-sync). 

Media streams (video and audio) 
are not multiplexed when captured, 
and inter-media sync is provided on 
a best-effort basis. 
 
If necessary, the audio and video 
streams are re-synchronized at the 
Remote Renderer when 
transmitting them to the 
destination: 
- Video and audio streams are 

synchronized and multiplexed 
when employing DASH.  

- Video and audio streams are 
synchronized with transport 
level protocols (RTP/RTCP) when 
employing WebRTC. 

The SFU needs to preserve the 

original timing patterns of 

The SFU does not modify 
timestamps, and it waits until the 
entire MUs are received to relay 
them. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 62 of 85 © 2023-2025 6G-XR Consortium 

MUs for each of the 

incoming/outcoming streams. 

Inter-source 

synchronization 

Synchronization across 

capturing sensors for 3D 

reconstruction of the same 

modality. 

It is provided for multiple camera 

sensors when the 3D reconstruction 

module is run locally. It relies on the 

CoaXPress CXP-12 provided to 

connect the multi-camera setup. 

Wall-clock timestamps to capture 

frames from each sensor could also 

be inserted to allow for an in-sync 

volumetric reconstruction. 

Inter-destination 

synchronization 

Synchronization across 
multiple destination 
devices/clients, for each of the 
received media streams, 
needs to be guaranteed.  
- This applies to native 

clients and to web video 
players. 

- Synchronization between 
native clients and web 
video players would 
involve delaying real-time 
communications for native 
clients, which is not 
desired. 

Audio and video streams at the 
destination are synchronized 
comparing the clock of the host and 
contextual information (metadata) 
provided by media streams: 
- DASH player: timestamp 

included in DASH MPD. 
- WebRTC player: RTP/RTCP 

packets timestamping. 
- Native clients: no inter-

destination synchronization is 
handled to avoid adding delays 
and affecting the user’s 
experience. This client is 
expected to be the best 
performant, having lower delay 
since it does not need the 
Remote Renderer. 

 

6.3.2 Initial evaluation of media synchronization 

This section analyses the outcomes obtained when testing the media synchronization achieved with 
the first versions of the XR Enablers described in this document. The tests are carried out by proposing 
a QoS measurement method based on image and audio processing, which enables measuring the E2E 
video and audio latency and inter-destination (only web video players have been considered) and intra-
media synchronization [6]. 

Specifically, in a multiuser XR experience scenario delivered through WebRTC, the following XR 
Enablers are employed: 

• Remote Renderer (described in Section 4.3): it is configured in multi-player mode, where each 
user/video player receives a personalized media stream (specific viewpoint is applied). It uses 
WebRTC protocol with VP8 and OPUS codecs for video and audio, respectively. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 63 of 85 © 2023-2025 6G-XR Consortium 

• Signalling Server for WebRTC (described in Section 5.2): the Signalling server is only necessary 
for the synchronization and does not affect the media synchronization. 

• WebRTC Player for receiving and playing WebRTC stream (described in Section 5.2): a different 
WebRTC player is run for each of the connected users. All users are using a laptop with Chrome 
web browser where the WebRTC runs. 

Testing is repeated considering different access networks such as Ethernet, Wi-Fi, and 5G Stand Alone 
for the connectivity of the clients/video players. Our analysis focuses on a context where five users are 
connected to the Remote Renderer and receive a personalized media stream simultaneously. 

Table 15 shows the summary of the obtained results when measuring the E2E latency and inter-
destination asynchrony, also called inter-device asynchrony. The employed method is explained in [6]. 
The shown values describe the average values of the 5 users. The lowest average values for both video 
and audio E2E latency are obtained in the case of Ethernet, followed by 5G, and ending with Wi-Fi. 
Regarding inter-destination asynchrony, in the case of Ethernet or 5G, we obtain values below 75 ms. 
In the case of Wi-Fi, we see that the inter-device asynchrony for video rises to 514.2 ms. 

Table 15. Initial synchronization results. 

  Ethernet Wi-Fi 5G 

Average E2E Latency 

(ms) 

Video 227.54 362.46 282.67 

Audio 185.22 324.59 304.17 

Inter-destination 

asynchrony (ms) 

Video 54.2 514.2 71.8 

Audio 45 69 38.8 

Figure 21 visually presents audio and video latencies experienced by each of the 5 connected users. 
The bars represent the minimum latency recorded for each device and for each stream (audio and 
video) during the test, while the upper whiskers illustrate the variability, or jitter, of these data, 
representing the highest value and the average of all values. Then, a composite of all player samples is 
depicted (bars and whiskers on the right of each graph labelled as inter-device), providing insights of 
inter-destination asynchrony for both video and audio. 

 

Figure 21. Inter-destination asynchrony. 

Regarding intra-media synchronization, also known as lip-sync, the obtained results can be seen in 
Figure 22. It is important to note that the y-axis is not the same for all three graphs, as the results 
obtained with Wi-Fi show outliers far from the values obtained with the rest of the technologies. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 64 of 85 © 2023-2025 6G-XR Consortium 

Specifically, the presence of outliers in the Wi-Fi data, distant from the corresponding values observed 
with alternative technologies, highlights anomalous behaviour within the Wi-Fi network, as 
asynchrony values of up to 650 ms have been recorded. Upon closer examination, it becomes apparent 
that this intra-media asynchrony can be attributed to instances where video playback experienced 
interruptions, leading to temporal disparities between video and audio streams. Despite these 
interruptions, the audio component remained largely unaffected. In the case of Ethernet, it is observed 
that the values of intra-media asynchrony generally remain below 100 ms, and even dip below 50 ms 
in the case of 5G. 

 

Figure 22. Intra-media synchronization. 

More detailed information about the QoS measuring method and the implemented setup is described 
in [6]. 

 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 65 of 85 © 2023-2025 6G-XR Consortium 

7 SESSION MANAGEMENT AND XR MEDIA ORCHESTRATION 

This section presents the XR Enablers in charge of session management and orchestration of the VR 
experience based on network user plane, and the AR experience based on network control plane. 

7.1 HOLO-ORCHESTRATOR 

7.1.1 Overview of the component 

The Holo Orchestrator is an AF composed of different modules and services to allow the establishment, 

appropriate configuration, and lifecycle management of multi-user holographic communication 

sessions, as shown in Figure 23 and briefly described as follows: 

• User Manager (UM): it is in charge of registering, managing and offering information / data from 

registered clients, scenarios and other in-cloud components, by using a MongoDB. By using the 

adopted holographic communication platform by i2CAT (HoloMIT27), users need to be logged in 

the platform before creating / joining a session, and then must select a virtual scenario on which 

the session will be established (e.g., a virtual meeting room, a museum). 

• Session Manager (SM): it is in charge of managing the lifecycle of multi-user sessions (i.e., creating, 

joining, leaving and eliminating sessions) for each involved user/client and for each selected virtual 

scenario, by storing the associated information on a MongoDB. It is also in charge of interfacing 

the other services of the Orchestrator, like the Clock Manager and the Index/Connection Manager 

(both introduced next), to be able to select the most appropriate in-cloud media function(s) - VNFs 

- to handle the communications for each session (i.e., SFU, MCU or Remote Renderer), the in-

cloud servers where to instantiate them, and then communicate this information to the involved 

clients.  

• Clock Manager (CM): it is in charge of ensuring a coherent notion of time to all involved entities in 

the media session. It can act as a clock source against which to synchronize to, or it can just provide 

a reference to a NTP server. 

• Index/Connection Manager (ConM): it is in charge of interfacing the edge orchestration platform 

(being developed in WP2) for selecting the most appropriate location where to deploy in-cloud 

VNFs for media processing and communication (i.e., SFUs, MCUs, Remote Renderers) and 

managing their lifecycle. This module will also be an endpoint for the envisioned Network-as-a-

Service (NaaS) APIs for enhanced XR services, like: (i) Edge-Cloud APIs (details in WP2 deliverables); 

and (ii) Network-assisted Rate Control (details in WP4 deliverables). 

 
27 https://i2cat.net/holoportation-technology/ 

https://i2cat.net/holoportation-technology/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 66 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 23. High-level Overview of Holo Orchestrator modules and services. 

7.1.2 Requirements 

The Holo Orchestrator does not have any limit regarding the number of registered users (UM) and/or 

sessions (SM) beyond the limits provided by MongoDB and the server on which it has been installed. 

Regarding the CM, a key requirement and an associated KPI is to provide synchronization levels in the 

order of a few milliseconds, which is feasible when using well-known clock synchronization protocols, 

like NTP. 

Regarding the Index Manager, no strict scalability challenges apply, as such a component does not 

handle the orchestration of computing resources over the cloud continuum, but just keeps track of the 

ones to be used and being used via a well-defined metadata model. 

The UM and the SM need to be always active, ready and reachable, if holographic communication 

services need to be provided anytime, and from anywhere. 

7.1.3 Initial hardware 

The Holo Orchestrator has been tested and run on a variety of physical PCs and servers (both running 

Windows and Ubuntu OS), with no specific hardware requirements. It has also been successfully 

deployed on different Azure VMs, with the following specs: Standard DS1 v2 (1 vCPU, 3.5 GiB memory 

RAM); Standard DS2 v2 (2 vCPU, 7 GiB memory RAM); and Standard D4s v3 (4 vCPU, 16 GiB memory 

RAM. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 67 of 85 © 2023-2025 6G-XR Consortium 

7.1.4 Initial software 

The Holo Orchestrator requires the installation of Node.js28 and socket.io29 and it has been successfully 
installed and run on Windows 10 and Linux (Ubuntu 22.04) machines (including Virtual Machines on 
Azure). It has also been virtualized as a docker container and helm chart, which eases its deployment 
on any machines, including those provided by hyper-scalers. 

7.2 IMS SESSION MANAGER 

7.2.1 Overview of the component 

Figure 24 shows the IMS session management E2E components adaptation as a mechanism to 
establish connectivity between MATSUKO AR application, the IMS system, and the UE. This signalling 
mechanism is required to establish WebRTC and IMS connections. The session management service 
exposes a WebSocket API for communication between the services. The MATSUKO AR application, 
specifically 3D reconstruction backend component, uses this API for registration. After registration, the 
media server becomes ready to be used for processing input data.  

 

Figure 24. E2E MATSUKO Components Adaptation to IMS System – Architecture. 

When the connection establishment between the DCSF and the MATSUKO signalling server is ready, 

the IMS session management provides the necessary information of the media server, i.e., the 

holographic reconstructor server, as depicted on Figure 24. 

 
28 https://nodejs.org/en 

29 https://socket.io/ 

https://nodejs.org/en
https://socket.io/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 68 of 85 © 2023-2025 6G-XR Consortium 

The service has been extended with additional APIs to adapt to the IMS signalling. Future extension of 
the API is possible to handle several calls. Initial support for such multiple calls has been implemented. 

7.2.2 Requirements 

The IMS session management server is a lightweight component with minimum system requirements. 

As its function is to establish the signalling and manage the session using small WebSocket messages 

during the initiation of the call, its network requirements are minimal (10kbps). 

7.2.3 Initial hardware 

The MATSUKO application with the IMS session management is deployed on Azure VMs using a 
distributed containerised approach. The VM which hosts the IMS session management runs on Ubuntu 
18.04.6 LTS with 2 vCPUs and 4 GB RAM. The VM which hosts the 3D reconstruction application runs 
on Ubuntu 18.04.6 LTS using NVIDIA T4 GPU with 4 vCPUs and 28 GB RAM. 

For E2E testing, an iPhone device that supports 3D sensors and FaceID is used for capturing (e.g., 
iPhone 12 Pro, iPhone 13, iPhone 14 Pro). For receiving and viewing the content, any device supporting 
and implementing IMSDC client can be used (in this case, Samsung Galaxy S22/S23 families). 

7.2.4 Initial software 

On the server side, the MATSUKO application server components are containerised microservice 
applications running as Docker containers in a Kubernetes cluster on Azure. On the UE side, the 
MATSUKO iOS application is installed on the iPhone, which captures the data. On the rendering side, 
the WebGL application is used and is downloaded and executed in the dialler of the browser during an 
IMS call session. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 69 of 85 © 2023-2025 6G-XR Consortium 

8 INFRASTRUCTURE CONFIGURATION 

This section presents the infrastructure enablers to allow the configuration of the computing and 
network infrastructure such to host the XR Enablers and provide them with the necessary resources. 
These enables also allow dynamic modifications of the allocated resources such as to adapt the 
infrastructure to the XR Enablers requirements at any given time. 

8.1 XR APPLICATION TRAFFIC REQUIREMENTS EXTRACTION 

8.1.1 Overview of the component 

XR applications can have dynamic requirements and it is important to understand them in order to 
provide an appropriate network configuration and guarantee QoS and determinism, e.g., when 
employing Time-Sensitive Networking (TSN) to protect time-critical XR workloads. At the same time, it 
is important to understand these requirements without the need to modify the applications. 

A software solution, referred to as “traffic profiler”, is developed to perform two main tasks 
transparently to the XR applications: a) extract traffic requirements and b) use this requirement to 
configure the packet scheduling in a TSN setup. 

8.1.2 Requirements 

This component helps to achieve network QoS KPIs on dynamic workloads such as latency upper-
bound constraints for XR applications in the range of a few milliseconds. 

The main requirement for this component is the deployment of a TSN-enabled network, that 
implements the 802.1AS and 802.1Qbv standards. A Linux machine is necessary for the component to 
run. Most importantly, applications do not need to be modified. 

8.1.3 Initial software 

This traffic profiler consists of three main parts (Figure 25):  

1) A profiler process that analyses the application traffic such as cycle periods, jitter, or packet 
sizes. The profiled data is then the basis to configure the network for optimized QoS. 

2) A scheduling component which determines a time-aware schedule to configure TSN devices. 

3) A monitoring component, to close the feedback loop and trigger the further profiling or re-
scheduling in case the achieved KPIs are insufficient. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 70 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 25. Overview of the traffic profiler: 1) Profiling of application, 2) Configuration of time-aware schedule, 3) 
monitoring of KPIs to trigger further profiling. 

A study on the effectiveness of this component on a productivity application in XR is being conducted. 
The results and gathered data can be made available to understand the potential benefits of the 
enabler under development. 

8.2 SCALABILITY ENABLER 

8.2.1 Overview of the component 

This component will implement scaling in and scaling out actions from the point of view of 
computational resources for each XR application, driven by the agreed QoE level for each end-user. 

This involves the implementation of a set of policies and controlling mechanisms that will trigger 
scaling in/out actions of efficient media functions over the compute infrastructure, that will feed the 
NorthBound Interface (NBI) of the edge orchestrators.  

This means that, based on the monitored resource utilization (CPU, RAM) by each application, this 
component will be able to trigger, when needed, the order to allocate more resources (CPU, RAM), 
this is scaling out mechanisms, or, on the contrary, to release resources in case the application is 
behaving well from the QoE point of view.  

Besides, it is planned that this component will support some prediction capabilities by means of the 
implementation of Machine Learning (ML) models, which will anticipate when those CPU scaling in/out 
section will be needed based on previously “learned” experience. Neural Networks will be trained with 
actual CPU usage data for this purpose.  

The required hardware to implement such component is yet to be defined. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 71 of 85 © 2023-2025 6G-XR Consortium 

8.2.2 Requirements 

The scalability enabler needs to be aware of the following monitored KPIs in order to perform its 
operations: 

• Compute resources utilization by VNF/app (in terms of number of cores, RAM, GPU or storage) 

• Edge node locations and their availability (in terms of number of cores, RAM, GPU or storage) 

• Monitoring events related to app management 

• QoE degradation 

• Regarding the predictive operations, at least a data set with previous CPU usage by similar 
VNF/app and user will be needed.  

8.2.3 Initial software 

The following software tools are envisioned for the implementation at the different steps:  

1. Model development, using open-source tools such as TensorFlow or Keras. 

2. Model deployment and serving, with open-source tool such as TensorFlow Serving. 

8.3 EDGE CONTINUUM ENABLER 

8.3.1 Overview of the component 

This component enables the migration or re-allocation of the XR applications considering a distributed 
deployment across the edge continuum, including multiple edge domains. This is done considering the 
specific XR application requirements in order to guarantee the required QoE, with special focus on 
latency reduction.  

The edge continuum enabler would be consuming the edge infrastructure NBI API that provides the 
app developer with the possibility of deploying the app in the optimal cloudlet in the edge continuum, 
to help achieve the minimum possible E2E latency. This will be done at the network level by activating 
and configuring the proper routing in the mobile network and in this way influencing the traffic routing 
from the user device towards the edge instance of the application (see D2.1 [4] for further details at 
network level). 

Therefore, the enabler will interact with the mechanisms below, this is with the North Bound Interface 
of the Edge Orchestrator (see details on 6G-XR architecture in D1.2 [7]), in order to be able to re-
allocate the application to a new edge cloudlet to find the minimum routing path that reduces the 
delay. 

Besides, it is planned that this component will be incorporating to some extent prediction capabilities 
by means of the implementation of ML models that will anticipate when those migration actions need 
to be triggered based on previously “learned” experience. 

The required hardware to implement such component is yet to be defined.  



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 72 of 85 © 2023-2025 6G-XR Consortium 

8.3.2 Requirements 

This component needs to be aware of the following monitored KPIs to perform its operations: 

• VNF/app instance edge localization 

• Compute resources utilization by VNF/app (in terms of number of cores, RAM, GPU or storage) 

• Edge node locations and their resource availability (in terms of number of cores, RAM, GPU or 
storage) 

• Monitoring events related to app management 

• QoE degradation, especially related to latency 

• Regarding the predictive operations, at least a data set with historical latency values and traffic 

congestion detection 

8.3.3 Initial software 

The following software tools are envisioned for the implementation at the different steps:  

1. Model development, with open-source tools such as TensorFlow or Keras. 

2. Model deployment and serving, with open-source tool such as TensorFlow Serving. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 73 of 85 © 2023-2025 6G-XR Consortium 

9 KPI AND TELEMETRY 

This section presents the first version of the monitoring system being developed to store, visualize and 
exploit KPIs collected from the XR Enablers. 

9.1 MONITORING SYSTEM 

9.1.1 Overview of the component 

This section reports on the progress made for collecting and displaying metrics from key components 

of the developed XR Enablers, including the Unity players (both for the production and consumption 

interfaces), SFU, MCU, and Orchestrator. 

The system has been designed and implemented by using widely adopted components for such 

purposes, like Prometheus30 and Grafana31. Its high-level architecture is sketched in Figure 26, and its 

main components are briefly introduced next: 

• HoloMIT SDK for Unity: It is the component providing relevant metrics for the native XR player, 

both at the production and consumption sides, from different sub-components of the E2E 

pipeline.  

• Prometheus Push Gateway: It enables the connection between the HoloMIT SDK for Unity and 

Prometheus for the reception and storage of metrics. 

• Prometheus: It is a toolset for alerting and monitoring, gathering metrics and storing them in 

a time-series database from several sources, including the Push Gateway. Prometheus further 

offers querying tools for retrieving and examining metrics data. 

• Grafana: It is a platform for analytics and visualization. It establishes a data source connection 

with Prometheus and pulls metrics data for display. Grafana gives the ability to design 

dashboards for data analysis, tracking system performance, and visualizing metrics trends. 

Grafana's connection to Prometheus as a data source must be appropriately configured, 

potentially requiring the intervention of extra components. It may entail creating panels, 

alerts, and dashboards based on metrics data obtained from Prometheus. 

 

 
30 https://prometheus.io/ 

31 https://grafana.com/ 

https://prometheus.io/
https://grafana.com/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 74 of 85 © 2023-2025 6G-XR Consortium 

 

Figure 26. High-level architecture of the metrics measurement and registration system. 

The overall workflow for metrics registration and visualization is summarized as follows: 

• Metrics from the Unity application/player, SFU and/or MCU are collected. 

• The data for the configured metrics are pushed to the Prometheus Push Gateway. 

• Prometheus periodically pulls metrics data from the Push Gateway and stores them in its time-

series database. 

• Grafana connects to Prometheus as a data source and retrieves metrics data. 

• Users access Grafana to visualize metrics data through custom dashboards and panels. 

On the server side, other components may retrieve metrics data from Prometheus for further analysis 
or integration with other (sub-)systems. 

9.1.2 Key Performance Indicators 

This section reports on a selection of metrics measured/reported from/for each XR Enabler. 

Native Player: 

Table 16. KPIs of the Native Player component. 

Metrics Description 

Resources Usage Metrics 

Sent / Received Bandwidth (Mbps) Total traffic sent / received by the native 
player (Mbps) 

CPU Usage (%) Percentage of CPU resources used by the 
Remote Renderer 

RAM Usage (MB) RAM resources used by the Remote 
Renderer 

GPU Usage (%) Percentage of GPU resources used by the 
Remote Renderer 

Point Cloud Encoding / Transmission 

Frames per second (fps) Number of frames per second that are 
encoded and transmitted 

Points per Cloud (#) Number of points per each Point Cloud 
frame 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 75 of 85 © 2023-2025 6G-XR Consortium 

Average Point Size (#) Average size of each Point within a Point 
Cloud frame 

Encoding latency (ms) Latency of the encoding process (ms) 

Point Cloud Decoding / Reception 

Frames per second (fps) Number of frames per second that are 
received and decoded 

Points per Cloud (#) Number of points per each Point Cloud 
frame 

Average Point Size (#) Average size of each Point within a Point 
Cloud frame 

Decoding latency (ms) Latency of the decoding process (ms) 

E2E latency (ms) Latency of the end-to-end pipeline 

 

Selective Forwarding Unit: 

Table 17. KPIs of the SFU component. 

Metrics Description 

CPU Usage (%) Percentage of CPU resources used by the SFU 

Input bandwidth (Mbps) Amount of traffic received by the SFU 

Output bandwidth (Mbps) Amount of traffic forwarded by the SFU 

Uplink delay / frame (ms) Delay from the originating clients to the SFU 
for each incoming frame 

 

Multipoint Control Unit: 

Table 18. KPIs of the MCU component. 

Metrics Description 

Incoming frame latency (ms) Latency for each incoming frame to the MCU 

Input fps (#) Number of frames / second received by the 

MCU 

Frame decoding time (ms) Latency to decode each incoming frame 

Frame decoding rate (#) Frames that are decoded per time interval 

Frame fusion size (MB) Size of each fused frame 

Frame fusion latency (ms) Latency to fuse frames from each player 

Frame fusion fps (#) Number of frames / second received by the 

MCU per time interval (s) 

Frame encoding time (ms) Latency to encode each fused frame 

Fusion MCU latency (ms) Latency of the MCU fusion process 

Output fps (#) Number of frames / second delivered by the 

MCU to each player 

 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 76 of 85 © 2023-2025 6G-XR Consortium 

Remote Renderer: 

Table 19. KPIs of the Remote Renderer component. 

Metrics Description 

CPU Usage (%) Percentage of CPU resources used by the 
Remote Renderer 

RAM Usage (MB) RAM resources used by the Remote 
Renderer 

GPU Usage (%) Percentage of GPU resources used by the 
Remote Renderer 

 

WebRTC Player: 

Table 20. KPIs for WebRTC player. 

Flow Metric Description 

Audio timestamp (ms) Current timestamp 

jitter (ms) RTP packet jitter for this media flow 
packetsLost / second 
(packets/s) 

Total number of RTP packets lost per second for 
this media flow 

packetsReceived / second 
(packets/s) 

Total number of RTP packets received per second 
for this media flow, it includes retransmissions 

bytesReceived / second 
(bytes/s) 

Total number of bytes received per second for 
this media flow, it includes retransmissions 

estimatedPlayoutTimestamp 
(ms) 

This is the estimated playout time of this track at 
the receiver device 

Video timestamp (ms) Current timestamp 

jitter (ms) RTP packet jitter for this media flow 

packetLost / second 
(packets/s) 

Total number of RTP packets lost per second for 
this media flow 

packetsReceived / second 
(packets/s) 

Total number of RTP packets received per second 
for this media flow, it includes retransmissions 

bytesReceived / second 
(bytes/s) 

Total number of bytes received per second for 
this media flow, it includes retransmissions 

estimatedPlayoutTimestamp 
(ms) 

This is the estimated playout time of this track at 
the receiver device 

framesReceived / second (fps) Represents the number of full frames received 
per second 

frameHeight (pixels) Represents the height of the last received frame 

frameWidth (pixels) Represents the width of the last received frame 

framesDecoded / second (fps) Represents the total number of frames 
successfully decoded 

 

DASH Player: 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 77 of 85 © 2023-2025 6G-XR Consortium 

Table 21. KPIs for DASH player. 

Metric Description 

width (pixels) The width of the current video track 

height (pixels) The height of the current video track 

streamBandwidth (bps) The bandwidth required for the current video stream 

estimatedBandwidth (bps) The current estimated network bandwidth 
playTime (ms) The total playback time 

bufferingTime (ms) The total time spent in a buffering state 

liveLatency (ms) The time between capturing a frame and displaying it on the 
screen of the end device 

 

Holo Orchestrator: 

Table 22. KPIs for the Holo Orchestrator component. 

Metric Description 

Active Sessions (#) Number of active holoconferencing sessions managed by the 
Orchestrator 

Number of users / session (#) Number of active users for each running session 

Types of users / session Arrays with the types of representation formats of each user for 
each session 

Active SFUs / session (#) Number of active SFUs for each running session 

Active SFUs / session (#) Number of active MCUs for each running session 

 

Scalability enabler: 

Table 23. KPIs for Scalability enabler 

Metrics Description 

CPU Usage (%) Percentage of CPU resources used by each application 

RAM Usage (MB) RAM resources used by the application 

GPU Usage (%) Percentage of GPU resources used by the application 

Available CPU Percentage of CPU resources available in the edge infrastructure 

Available RAM (MB) Amount of RAM available in the edge infrastructure 

Available GPU Usage (%) Percentage of GPU resources available in the edge infrastructure 

 

Edge Continuum enabler: 

Table 24. KPIs for the Edge Continuum enabler 

Metrics Description 

CPU Usage (%) Percentage of CPU resources used by each application 

RAM Usage (MB) RAM resources used by the application 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 78 of 85 © 2023-2025 6G-XR Consortium 

GPU Usage (%) Percentage of GPU resources used by the application 

Available CPU Percentage of CPU resources available in the edge infrastructure 

Available RAM (MB) Amount of RAM available in the edge infrastructure 

Available GPU Usage (%) Percentage of GPU resources available in the edge infrastructure 

Latency (ms) Average latency in the network 

As a proof of concept, Figure 27 shows some screenshots captured by the Grafana dashboard reporting 

on key metrics from the native Unity player and the SFU (co-located in the same machine of the Holo 

Orchestrator in this case). 

 

 

Figure 27. Grafana dashboards showing collected metrics from XR Enablers. 

9.1.3 Initial hardware 

This monitoring system does not impose strict computing (CPU or GPU) or memory (RAM) 
requirements for installation and execution. However, the monitored metrics require storage space to 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 79 of 85 © 2023-2025 6G-XR Consortium 

allocate the Prometheus database with the metrics. Storage capacity of at least a few tens of GBs is 
required. 

9.1.4 Initial software 

This monitoring system has been installed and can run on different Windows and Ubuntu machines, 

including physical ones and deployments on Azure. For the main software requirements and 

dependencies, please refer to the documentation from Prometheus32 and Grafana33. 

9.1.5 Dataset exporters 

At the time of writing this report, the monitoring system can measure, report, register and visualize 
the metrics in near real-time. The next deliverable D3.2 – “Final versions of XR enablers” will report on 
new modules to be able to export the metrics to appropriate databases or structured textual files to 
be later used for the creation of datasets. 

 

 
32 https://prometheus.io/ 

33 https://grafana.com/ 

https://prometheus.io/
https://grafana.com/


6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 80 of 85 © 2023-2025 6G-XR Consortium 

10 SUMMARY 

This report presents the XR Enablers that are currently under development in WP3 of 6G-XR. The 

objective of these XR Enablers is to enable the necessary E2E media pipeline for the deployment of 

three WP6 UCs: 

• UC1 - Resolution Adaptation or Quality on Demand 

• UC2 - Routing to the Best Edge 

• UC3 - Control Plane Optimization 

The UC1 and UC2 use the XR enablers integrated with the network user plane for VR experiences. The 

UC3 evolves the IMS system as a component of the network control plane for AR experiences. To 

achieve these objectives, the following capabilities are covered by the presented XR Enablers: 

• Volumetric capture sensors and reconstruction. 

• Cloud/edge-enabled multimedia processing for scalability and wider user’s access. 

• Multiprotocol multimedia delivery across heterogeneous end devices. 

• Clock and media synchronization capabilities. 

• Multimedia session management and orchestration. 

• Infrastructure configuration enablers to optimize resources allocation for the multimedia 
processing. 

• Monitoring system for KPIs related with multimedia processing. 

An initial release (first version) of the XR Enablers functions has been generated and described in this 
document, including the hardware and software employed for their development. 

These XR Enablers will be developed further during the remaining months of the project and, finally, 
integrated within the computing infrastructure of the 6G-XR South Node test facilities, namely 5Tonic 
(Madrid, Spain) and 5GBarcelona (Barcelona, Spain), where the three WP6 UCs will be tested. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 81 of 85 © 2023-2025 6G-XR Consortium 

11 REFERENCES 

[1] 6G-XR, “Requirements and use case specifications,” Deliverable D1.1, September 2023. 

[2] Guo, Kaiwen, et al. “The relightables: Volumetric performance capture of humans with realistic 
relighting.” ACM Transactions on Graphics (ToG) 38.6 (2019): 1-19. 

[3] Langa, Sergi Fernández, et al. “Multiparty holomeetings: Toward a new era of low-cost volumetric 

holographic meetings in virtual reality.” IEEE Access 10 (2022): 81856-81876. 

[4] 6G-XR, “Orchestration, AI techniques, End-to-end slicing and Signalling for the core enablers – 
design,” Deliverable D2.1, February 2024. 

[5] Fernandez, Sergi, et al. “Addressing Scalability for Real-time Multiuser Holo-portation: Introducing 

and Assessing a Multipoint Control Unit (MCU) for Volumetric Video.” Proceedings of the 31st ACM 

International Conference on Multimedia. 2023. 

[6] Yeregui, Inhar, et al. “Edge Rendering Architecture for multiuser XR Experiences and E2E 

Performance Assessment.” 2024 IEEE International Symposium on Broadband Multimedia Systems 

and Broadcasting (BMSB). IEEE, 2024. 

[7] 6G-XR, “Reference architecture description,” Deliverable D1.2, June 2024. 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 82 of 85 © 2023-2025 6G-XR Consortium 

APPENDIX A - R32 LIGHT-FIELD CAMERA FACTSHEET 

R32 factsheet 

 

Sensor 

Image sensor Onsemi XGS 32000  

Lateral resolution (H x V) 6560 x 4948 pixel2  

Lateral resolution (MegaPixel) 32.4 MP 

Effective lat. resolution (H x V) 3280 x 2474 pixel2 

Effective lat. resolution (MegaPixel) 8.1 MP 

Active area 21.0 x 15.8 mm2 

Pixel length 3.2 µm 

Shutter type Global shutter 

Frame rate 36 fps 

ADC resolution 12 bits 

Spectrum Colour 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 83 of 85 © 2023-2025 6G-XR Consortium 

Spectral response 

 

Cover glass removed? Yes 

Sensor interface HiSPi 

Micro lens array 

MLA type L3-D125-A018-VRE-VI 

Light-field mode  Galilean multi focused plenoptic 2.0  

Micro lens types  3 

Geometry hexagonal 

Layout 

 

Aperture f/1.8 

Lens pitch 125 µm 

  

Camera interface CoaXPress (2.5–12.5 Gbps); Micro-BNC (HD‑BNC) connector 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 84 of 85 © 2023-2025 6G-XR Consortium 

Camera interface bandwidth CXP Speed Bandwidth Cable length fps @ full res. 

 CXP-2 2.5 Gbps 180m 7 

CXP-3 3.125 Gbps 100m 9 

CXP-5 5 Gbps 60m 14 

CXP-6 6.25 Gbps 40m 18 

CXP-10 10 Gbps 40m 29 

CXP-12 12.5 Gbps 30m 36 

Power Recommended: Power over CoaXPress (PoCXP): 24 VDC supplied via the camera's 
Micro-BNC (HD‑BNC) connector. 11 W (typical) 

Not Recommended: Power supply via I/O connector: operating voltage 24 VDC. 
Minimum 18.6 VDC. Maximum 26 VDC. 

I/O  M8 6-pin female connector (IEC 61076-2-104) 

Recommended mating connector: M8 6-pin male 

Pinout Pin Line Function 

 

1 - 24 VDC power 

2 Line 1 Opto-coupled I/O input 

3 - Ground for opto-coupled I/O 

4 Line 2 General purpose I/O (GPIO) 

5 Line 3 General purpose I/O (GPIO) 

6 -  Ground for camera power and General Purpose 
I/O (GPIO) 

Size (L x W x H) 50 x 80 x 80 mm3 



6G XR | D3.1: Initial versions of XR enablers (V1.0) | Public 

 

 Page 85 of 85 © 2023-2025 6G-XR Consortium 

 

 

Weight 550 g 

Mount Custom, thermal decoupling of lens and camera body 

  

OEM Basler Lens 

Type  Based on F-S35-2528-45M-S-SD 

Focal length 24.5 mm 

Aperture*  f/1.8  

Focus range* 0.2 - 3.5m 

Angle of View (on R32) Horizontal: 55.7°  

Vertical: 39.1°  

 

 

 

 

 

 

 

 

 


	Disclaimer
	Copyright notice
	EXECUTIVE SUMMARY
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	1 INTRODUCTION
	1.1 Objectives of the deliverable
	1.2 Structure of the deliverable
	1.3 Target audiende of the deliverable

	2 END-TO-END DIAGRAM OF COMMUNICATIONS
	2.1 VR user plane
	2.2 AR control plane

	3 MULTI-SENSOR VOLUMETRIC RECONSTRUCTION
	3.1 Video capture
	3.1.1 Overview of the component
	3.1.2 Requirements
	3.1.3 Volumetric sensors
	3.1.4 Initial software

	3.2 Video reconstruction
	3.2.1 Overview of the component
	3.2.2 Requirements
	3.2.3 Initial hardware
	3.2.4 Initial software


	4 CLOUD/EDGE XR PROCESSING AND SCALABILITY
	4.1 Selective Forwarding Unit
	4.1.1 Overview of the component
	4.1.2 Requirements
	4.1.3 Initial hardware
	4.1.4 Initial software

	4.2 Multipoint Control Unit
	4.2.1 Overview of the component
	4.2.2 Requirements
	4.2.3 Initial hardware
	4.2.4 Initial software

	4.3 Remote Renderer
	4.3.1 Overview of the component
	4.3.2 Requirements
	4.3.3 Initial hardware
	4.3.4 Initial software


	5 ADAPTIVE LOW-LATENCY XR DELIVERY
	5.1 Native player
	5.1.1 Overview of the component
	5.1.2 Requirements
	5.1.3 Initial software
	5.1.4 Initial hardware

	5.2 WebRTC streaming to web player
	5.2.1 Overview of the components
	5.2.2 Requirements
	5.2.3 Initial software
	5.2.4 Initial hardware

	5.3 DASH streaming to web player
	5.3.1 Overview of the components
	5.3.2 Requirements
	5.3.3 Initial software
	5.3.4 Initial hardware


	6 MULTI-MODAL SYNCHRONIZATION
	6.1 Overview on synchronization in 3GPP
	6.1.1 Network-assisted media synchronization in 3GPP
	6.1.2 Detecting synchronization status

	6.2 Clock synchronization
	6.2.1 Overview on clock synchronization protocols
	6.2.2 Requirements and implementation

	6.3 Media synchronization
	6.3.1 Requirements and implementation
	6.3.2 Initial evaluation of media synchronization


	7 SESSION MANAGEMENT AND XR MEDIA ORCHESTRATION
	7.1 Holo-orchestrator
	7.1.1 Overview of the component
	7.1.2 Requirements
	7.1.3 Initial hardware
	7.1.4 Initial software

	7.2 IMS session manager
	7.2.1 Overview of the component
	7.2.2 Requirements
	7.2.3 Initial hardware
	7.2.4 Initial software


	8 INFRASTRUCTURE CONFIGURATION
	8.1 XR application traffic requirements extraction
	8.1.1 Overview of the component
	8.1.2 Requirements
	8.1.3 Initial software

	8.2 Scalability enabler
	8.2.1 Overview of the component
	8.2.2 Requirements
	8.2.3 Initial software

	8.3 Edge Continuum enabler
	8.3.1 Overview of the component
	8.3.2 Requirements
	8.3.3 Initial software


	9 KPI AND TELEMETRY
	9.1 Monitoring system
	9.1.1 Overview of the component
	9.1.2 Key Performance Indicators
	9.1.3 Initial hardware
	9.1.4 Initial software
	9.1.5 Dataset exporters


	10 Summary
	11 References
	Appendix A - R32 light-field camera factsheet

